

Enhanced Efficiency Fertilizers: Why is Efficiency Important? How Do They Work? What Can We Expect?

Patricia Steinhilber

UMCP

Ag Nutrient Management Program

Today's Approach

- Kratochvil's webinar on enhanced efficiency fertilizers on March 9
 - -www.anmp.umd.edu
 - workshop tools
 - top of list
- many misconceptions are afloat among our clients
 - -"slow release N"

Why the Interest in N? 1) Ag Profitability

- nitrogen fertilizer prices have dramatically increased in recent years
 - cost of N fertilizer is closely linked to cost of natural gas
- increase in price is indicative of a long term trend
 - global increase in demand for energy & crop nutrients

Why the Increase in Price?

- N fertilizer production is an energyintensive process
 - Haber-Bosch process
 - hydrogen (H_2) + nitrogen (N_2) = ammonia (NH_3)
 - hydrogen gas (H₂) from natural gas
 - nitrogen gas (N₂) from the atmosphere
 - natural gas is steam reformed to make hydrogen gas
 - nitrogen gas must be separated from air
 - nitrogen and hydrogen are combined at very high temperature (850 F) and pressure (250 atm)

Energy Inputs for Big 3

 N – 45 GJ/ton (5% of the global consumption of natural gas)

P – 20 GJ/ton

K – 8 GJ/ton

Why the Interest in N? 2) Reactive Nitrogen (N_r)

- vulnerable to loss
 - leaching
 - denitrification
 - volatilization
- biologically, radiatively and photo-chemically active N compounds
 - N₂O nitrous oxide (greenhouse gas and ozone destroyer)
- "cascades through the environment external to the agroecosystem" (Cassman)
- economic loss and environmental risk

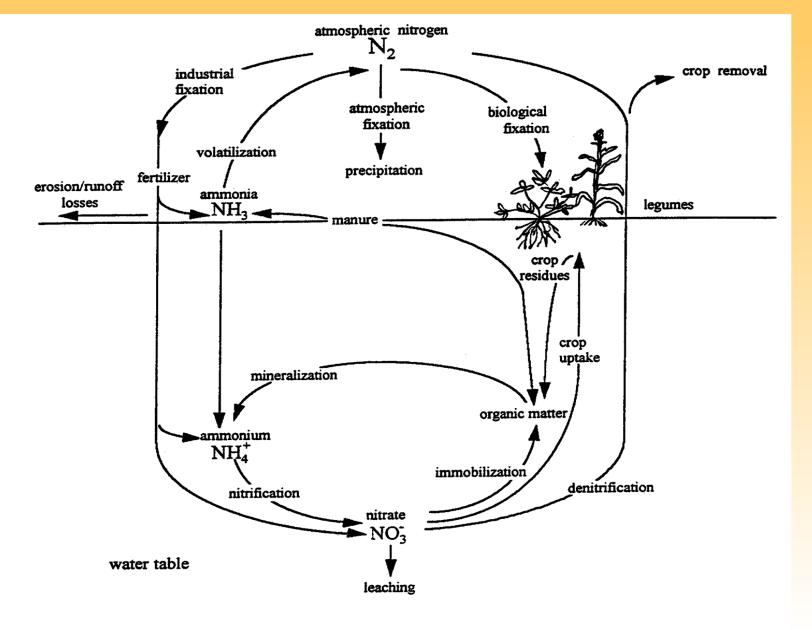


Figure 3-2. The Nitrogen Cycle.

Department of Environmental Science and Technology

Nitrogen Use Efficiency (NUE)

- Re_N N fertilizer recovery efficiency
 - fertilizer-N recovered in the above-ground biomass during the growing season
 - 37% in corn (USA Corn Belt, Cassman)

- worldwide in cereals 33% (Raun)
 - developed countries 42%; developing countries 29%

Keys to Improving NUE "The 4 Rs"

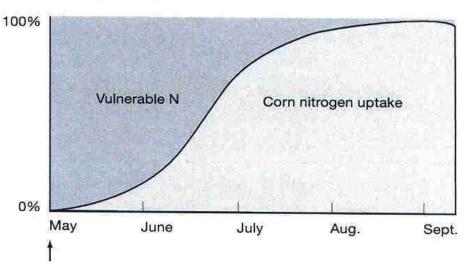
right rate

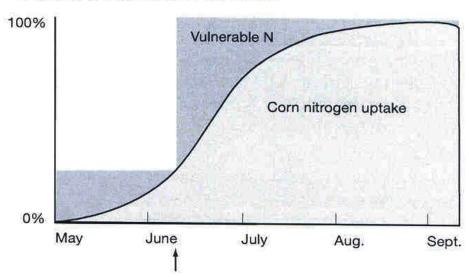
right source

right time

right place

"Maximize utilization of nitrogen fertilizer you've applied."


- reduce rate of nutrient release (N) to the soil solution
- reduce transformations to mobile forms
 - slow down nitrification (ammonium to nitrate)
- reduce the transformation to gaseous forms (N)
 - reduce denitrification (nitrate to nitrogen gas) **
 - reduce ammonium volatilization (ammonium to ammonia)


Enhancing Synchrony: Minimize Vulnerable Nitrogen

- if the N is not yet applied, it can not be lost
- solution? split application (Penn State Agronomy 12)

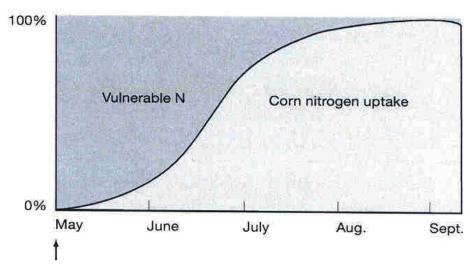
A. All N applied preplant

B. Bulk of N applied as a sidedress

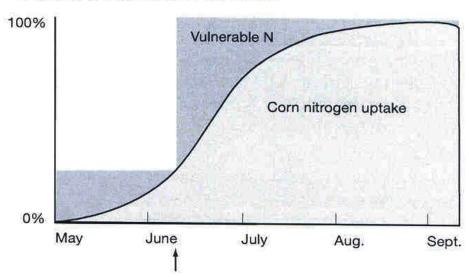
Note: Arrows indicate when fertilizer is applied.

DE Yield Data on Split Application of N on Corn (bu/A)

	150 lbs/A pre-plant	40-110 lbs/A pre- plant sidedress
2003*, irrigated loamy sand soil	48a	102b
2003*, dryland, loamy sand soil	102c	126d
2005, irrigated,	98e	158f
loamy sand		



So, why isn't sidedressing a widespread nitrogen BMP?



 Is there a product that can be applied preplant and not be vulnerable to loss?

A. All N applied preplant

B. Bulk of N applied as a sidedress


Note: Arrows indicate when fertilizer is applied.

Department of Environmental Science and Technology

Controlled Release Nitrogen

- protect nutrients with a semi-permeable membrane
 - ESN®, Environmentally Smart Nitrogen
 - a polymer-coated urea
 - diffusion of urea is temperature controlled

ESNTM

- a controlled release urea product
- relies upon diffusion
- diffusion is temperature-dependent
- ESN was designed for the Mid-West corn belt
- may not function optimally in other climatic zones

Corn Yield Data from DE (150 lbs/A N)

	all preplant	all preplant	40-110
	UAN	ESN	preplant-
			sidedress
			UAN
2003	102a	112a	126b
dryland, sil			
2003	48a	64b	102c
irrigated, ls			
2005	98a	113b	158c
irrigated, ls			

Department of Environmental Science and Technology

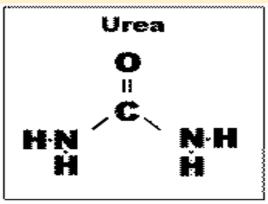
Fertilizer Additives

- nitrification inhibitors
 - -retard conversion of ammonium to nitrate
 - reduce conversion to a more mobile form
- urease inhibitors
 - ties up urease enzyme so to slow conversion of urea to ammonium

Reduce Transformations to Mobile Forms

- nitrification inhibitors $NH_4^+ \longrightarrow NO_2^-$
 - N-Serve™ is a bactericide that kills targeted organisms, Nitrosomonas, works with anhydrous ammonia
 - Instinct[™] designed to work with surfaceapplied products
 - -both are nitrapyrin
 - organic compound that itself is subject to microbial attack

Reduce the Transformation to Gaseous Forms


- aka minimizing ammonia volatilization
- affects broadcast, surface-applied urea, UAN, ammonium nitrate and manure

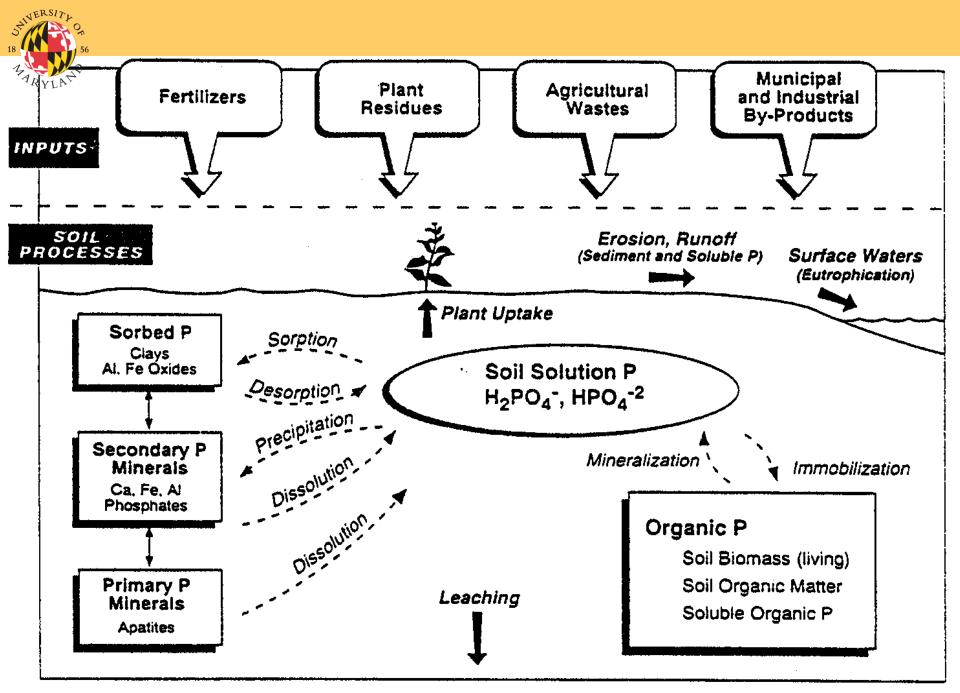
 ammonium in the presence of hydroxyl (OH⁻) can produce ammonia gas
 NH₁⁺ + OH⁻──→ H₂O + NH₃

So How Does Urea Relate to Ammonia Loss?

- urea is converted to ammonia by the enzyme, urease
- if urease activity is blocked, the rate of conversion is reduced
- urease is ubiquitous in soil & on <u>crop residue</u>
 - 20 X more residue than soil
- enter ... urease inhibitors, like NBPT or Agrotain™

Urease Inhibitors

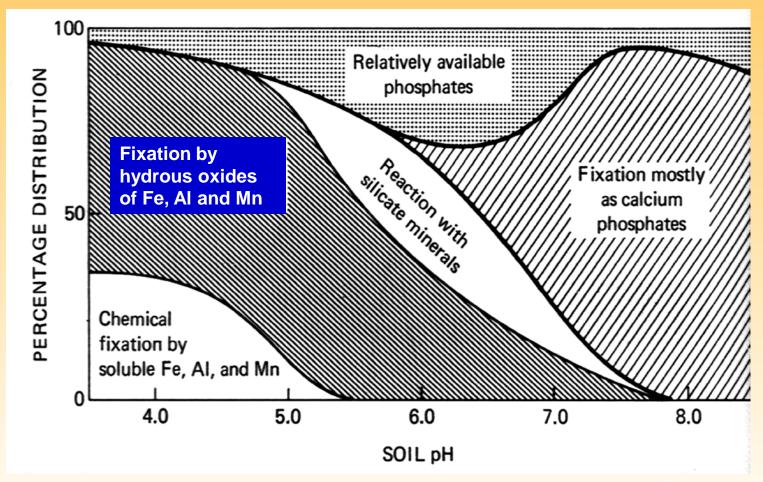
- $NH_3 NH_4^+ + OH^-$
- urea is very soluble but hydrolysis of urea is rapid under warm temperatures
- urease inhibitors (UIs) temporarily block the action of urease
- UIs are organic compounds, subject to microbial attack


When Might It Be Effective?

- UIs may block urea conversion up to 2 weeks
- if rainfall occurs, urea will move into the soil
- effectiveness depends upon temperature and rainfall
- most effective in warm weather when broadcasting urea

Long-term Phosphorus Issue

- "We're running out!"
- US has reserves for 25 year
- Morocco has 75% of the world's reserves
 - geographical imbalance could pose a geostrategic ticking time bomb
- US is importing P from Morocco
 - prolongs US reserves


Department of Environmental Science and Technology

"Maximize utilization of phosphorus fertilizer you've applied."

- reduce reactions of phosphorus with soil
 - phosphorus fixation
 - adsorption onto surfaces of iron and aluminum oxides
 - precipitation as secondary P compounds
 - in acid soils P combines with iron (Fe) and aluminum (Al) to form insoluble compound
 - in neutral and calcareous soils P combines with (Ca) to form insoluble compounds

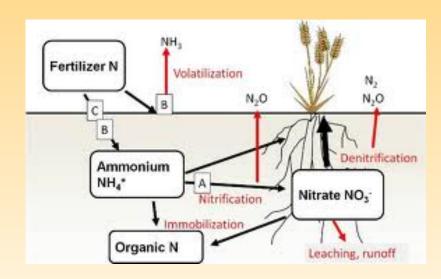
Department of Environmental Science and Technology

Department of Environmental Science and Technology

Reduce Reactions of Phosphorus with Soil

- protect phosphorus with a chemical shield
 - AVAIL® "enhance P availability"
 - coated with a chemically-reactive material
 - protects P from reacting with Fe, Al or Ca in the soil solution
- Question?
 - Under what circumstances might it be useful?

EFFs


 engineer controlled release products

 design additives that slow down natural processes that lead to loss

 develop "shields" to protect nutrients from the reacting with soil components

Questions or Comments?

gov.mb.ca