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Today’s presentation
Climate change: from global to local
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The warming of the planet is unequivocal

global temperature is increasing in lock-step with CO,
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The relentless rise of atmospheric CO,

a rise that’s unprecedented over the past 800,000 years

500
480
460
440
420
A DD

about 3 million years ago

) 1
-t

w
5 O X
O O

w
) O

N
O

llennia, eric CO, had never been above this line .
N

0 O |
O

O

@

LS
B
O

N
&

3
<
)
)
)
)i
2
)

T
A | |
ial

\»

AUV 600 510/0) 400 $10/0) 2400) 100

O
O

O

Q) OO
O

Thousand years before today

Image credit: nttp://climate.nasa.gov/evidence/. Data: blena of Vostok Ice core data and Mauna Loa CO



Perhaps the warmest summer in several thousand years

Temperature Anomaly (° C)
(Difference from 1980-2015 annual mean) Record Years
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And the global records keep on falling

A few temperature streaks worth watching
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Temperatures are rising all across the US
with the last decade 2 F warmer than the 1901-1960 average
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Extreme summer heat is more common
temperature distributions are shifting toward hotter extremes

National Aeronautics and Space Administration I pace Flaht Cenler
: Sciences and Exploration Directorate

['-"‘\..
[y
Nam Goddard Institute for Space Studies Earth Sciences Division

The New Climate Dice: Public Perception of Climate Change
By James Hansen, Makiko Sato, and Reto Ruedy — August 2012

Our climate dice, featuring two

sides red for “hot”, two sides blue
for “cold”, and two sides white for ’
“normal” in 1951-1980, are now

loaded. We need four red sides to

characterize 21t Century climate.

http://www.giss.nasa.gov/research/briefs/hansen_17/

NASA/Goddard Space Flight Center GISS and Scientific Visualization Studio; Hansen et al., 2013 (PNAS)



Record highs outpacing record lows
with highs exceeding lows by 2:1 over the past decade
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Meehl et al., 2009 (Geophysical Research Letters)



Seasons are shifting
with higher temperatures affording longer growing seasons

‘the pefst two decades

are now 10 da_s longer
'than/in'1901 to 1961.
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Menne et al., 2012; US National Climate Assessment, 2014



Spring is advancing much faster
with Spring 2017 occurring up to 25 days earlier than normal
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New York Times; USA National Phenology Network, 2017; World Weather Attribution




Annual precipitation amounts are changing
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Precipitation change (%
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Extreme rainfalls are more frequent, too
especially in the Northeast

Northeast

Extreme rains rose by
71% from 1958 to

2012, faster than any.
- other region in the US.
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Karl et al.;, 2009; US National Climate Assessment, 2014




For instance: the flash floods in Ellicott City
A 1,000-year storm that ylelded 3 months of rain in 2 hours
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University or Marylana Weather (http://weather.uma.eau/)



The atmosphere now holds more water

a consequence of increasing atmospheric temperatures

140

| Clausius-Clapeyron relation
f';{;; ] Water vapor pressu re vs. temperatu re
Take home point ad’
The water-holding capacity of the
atmosphere increases by 7% for
. every 1°C rise in temperature.

More water = more rainfall.
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Temperature (°

=

US National Climate Assessment, 2014



We have entered a new normal
all weather events are affected by climate change

nlq.mre h PERSPECTIVE
C lmate C a'nge PUBLISHED ONLINE: 22 JUNE 2015| DOI: 10.1038/NCLIMATE2657

Attribution of climate extreme events
Kevin E. Trenberth’, John T. Fasullo’ and Theodore G. Shepherd?

“The climate is changing: we have a new normal. The
environment in which all weather events occur is not
what it used to be. All storms, without exception, are
different. Even if most of them look just like the ones
we used to have, they are not the same.”

Trenberth et al., 2015 (Nature Climate Change)



USDA’s LTAR Network

serving as a sentinel to changes in climate and hydrology

Northern Great Plains Heartland Northern Crescent
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The Mahantango Creek Watershed

an ideal place to assess long-term trends in hydroclimate
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Steadily rising temperatures

disproportionate increase in minimum temperatures
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Lu et al., 2015 (J. Hydrol: RS)



Shifting seasons

growing season has increased from 180 to 200 days per year
10]0)

350 First -2.2 °C freeze date in fall
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Shifting seasons
Summer in March, 2012; record heat followed by frost

March 2012 daily high and low temperatures

Two weeks of record temps

[€)
2
[¢)
| -
)
4
O
S
()
o
5
|_

7

1 2 3 456 7 8 910111213141516171819202122232425262728293031
March




Shifting seasons
false springs and late season frosts still threaten crops

®

O3, TRANSACTIONS, AMERICAN CECPHYIICAL UNION

Fos, Vol. 94, No. 20, 14 May 2013

VOLUMES4  NUMBER 20
14 MAY 7013
PAGES 181188

The False Spring of 2012,
Earliest in North American Record

PAGES 181-182

Phenology—the study of recurring plant
and animal life cycle stages, especially their
timing and relationships with weather and
climate—is becoming an essential ool for
documenting, communicating, and anticipat-
ing the consequences of climate variability
and change. For example, March 2012 broke
numerous records for warm temperatures
and early flowering in the United States

[Karl et al. 2012 Ehwood et ai. 2013]. Many
regions experienced a *false spring” a period
of weather in late winter or eary spring
sufficiently mild and long to bring vegetation
out of dormancy prematurely, rendering it
vulnerable to late frost and drought.

As global climate warms, increasingly
warmer springs may combine with the
random climatological occurrence of
advective freezes, which result from cold air
moving from one region to another, io
dramatically increase the future risk of false
springs. with profound ecological and
economic consequences [e.q. Gu et af, 2008;
Maring et al, 2011; Augsprger, 2013). For
example, in the false spring of 2012, n event
embedded in long-term trends toward earlier
spring [e.g. Schuartz et al., 2006], the frost
damage o fruit trees totaled half a billion
dollars in Michigan alone, prompting the
federal government to declare the state a
disaster area [Knudsan, 2012].

Phenalagical Forecasting: Predicting
False Springs a Season or Tivo in Advance?

Robust phenological forecasts at seasonal
time scales would enable governments and
private entities alike to anticipate certin
climate risks (2.g, frost damage, wildfires,
and droughf). Despite uncertainties associ-
ated with seasonal forecasts [Nafional
Research Counci, 2010], some aspects of the
circulation anomalies that drove the 2012
carly spring may have been predictable

D. Mook

a) 207 Century Spring Onset

)

b) 2012 First Leaf Index Anomalies
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Fig 1. Metrics of phenology diring the spring and summer of 2012 () Time series of staion-
based extended spring index anomalies with respect to the 1381-2010 climatology from 1900
through 2012 and aueraged over the conterminous United States (the first leaf index described in
Schwartz el al. {2006] and Schwartz et al. [2013]). () Map of first jeaf index anomalies (in days)
with respect i the 13812010 climatoicdy (c) Vialses of the damage index with respect (0 the
1981-2010 dimatalogy (aiso described in Schwartz et al. [2006]), which measures the aromalous
number of days betiween the st freeze event date and the first deaf index dle (with high negative
nurnbers indicative of a kong period of potential plant grouwth fllowed by a freeze event)

() Normatized anomalies, with respect to the 2001-2011 baseline, of the thermal time o peak
‘normalized difference vegetation index (NDVE @ metric of heat accumtlied prior to peak spring
greenness (e de Beurs and Henebry, 2005, 2008, 2010]). {) Normalized anomalies in modeled
‘peak NDVI {again, with respect to 2001201 1), indicating significanly lower valies during the
summer (7} The NOVI time averaged acmss the Corn Helt and around the western Great Lakes,
shouwn by the box in Figures 1d and Te (in days fom 1 January onward). The gray e in Figure 17
shouws the 20012011 dimatology, and the biack fine shows the 2012 anomabies. Observational
dlata used 1o create Figures 1a-Ic were obigined fom the National Oceanic and Atmaspheric
Administration Giobal Historical Climale Network archive of day temperature records (hifp//

ke nedie. noa gov/foa/ climate /ghen-daity/ ), and Moderate Resolution Imaging Spectoradiometer
(MODIS) procucts MCIH3CA and MOD] 10, used io create Figures 1d-1{ was obiained fom the
L1 Genltygical Sumey Land Processes Diswibuted Archive Center (hups:.flpeiaac 1sgs.gou).

© 2013. American Geophysical Union. All Rights Reserved,

2012 fruit crop losses due to frost/freeze

The Patriot-News

Frost took a bite out of
central PA’s fruit crops

percent o gu preent of their
[p—

Aust et al., 2013; Knutson et al., 2013; Farm Service Agency, 2014

In the northeastern US, about
100 counties were declared
disaster areas, including
Northumberland County in PA,
which contains the WE-38 basin.




Annual changes in watershed hydrology
slightly divergent trends in precipitation and streamflow
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Increasing watershed evapotranspiration
actual evapotranspiration is becoming more efficient
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Monthly total
precipitation
(mm per decade)

Monthly total
2 streamflow
Y (mm per decade)
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Heavier rains and higher flows in early fall
Tropical Storm Lee (September 7-8, 2011)

Rainfall (in)

0.01 - 0.20/

0.10 - 0.25
0.25-0.50

0.50 — 0. 75-

0.75-1.00
1.0-15

15-20 - | Mahantango Creek
20-25 - I Storm total rainfall:  14.5in (370 mm)

Hourly rainfall intensity
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Lu et al., 2015 (J. Hydrol: RS)



Atmospheric rivers and extreme rains
A connection that produces some of our wors
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ClimateReanalyzer.org; Gitro et al., 2014 (J. Operational Meteorology)



Tropical Storm Lee’s rainfall was extreme
An average recurrence interval of once every 980 years

What about less extreme storms
that occur every 50 to 100 years?

JOURNAL OF APPLIED METEOROLOGY AND CLIMATOLOGY

Time-Dependent Changes in Extreme-Precipitation Return-Period Amounts
in the Continental United States

ARTHUR T. DEGAETANO

Northeast Regional Climate Center, Department of Earth and Atmospheric Science, Cornell University, Ithaca, New York

“In the Northeast, the median decrease of both the 50-
and 100-yr recurrence interval is nearly 40%. Thus
what would be expected to be a 100-yr event based on

1950-79 data occurs with an average return interval of
60 yr when data from 1978-2007 are considered”

NOAA Atlas 14 Precipitation Frequency Data Server; DeGaetano, 2009



Fewer days with snow on the ground
Reflecting a wider trend occurring in the Northeast
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Snowmelt runoff floods are declining
an expected trend as minimum temps increase in the winter

18

- Floods generated by snowmelt

16

14 ’ Floods generated by rainfall
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Number of flood events
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Lu et al., 2015 (J. Hydrol: RS)



To summarize: climate change is here
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A glimpse of our climate future
What pathway are we on if we follow business as usual?
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Earth’s climate history

where we’ve been, and where we’re likely heading
A

RCP 8.5: Business as Usual
CO, peak = 1370 ppm

Dangerous anthropogenic
interference with Earth’s
climate system

Temperatures RCP 4.5: Stabilization
unknown to humans CO, peak = 650 ppm

N

Marcott et al., 2013 (Science)

Temperatures for all of
agricultural history

>
mv
S
gm
o <
25
BCD
©
TR
o
o)
E
r
© O
Q2 =
9%
O 3
|

Shakun et al., 2012

(Nature) . . .
First cereal crops  Intensive agriculture

Last Ice Age (~ 10,000 BCE) (~ 5,500 BCE)

-20,000 -16,000 -12,000 -8,000
Year (BCE / CE)

Original image concelived by Jos Hagelaars and modified by Paul Price



Implications for the Northeast
Using downscaled climate data to project. future scenarios

,,,,

Downscale 9 models from
the CJ,J,)Pd J\/JJLJ—»J Inter-

Ual pathway (r CP 8.5). L ——

Haynoe et al., 2007 (Climate Dynamics); Stoner et al., 2013 (International J. Climatology)



The Mid-Atlantic climate is temperate
mean annual temperatures range from 40 to 58 F

=~  Hadley Centre

Hdl Climate Model ) ‘
Centre Version 3 (HadCM3) o
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Mean annual temperature (1960 to 1989)
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Mid-century temperatures will be warmer
with the new range shifting from 46 to as high as 60 F

=~  Hadley Centre

I_wl@m Climate Model
cad® Version 3 (HadCM3)

Mid-Atlantic’s mid-century
temperature range
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Mean annual temperature (2015 to 2044)
°F 34 36 38 40 42 44 46 48 50 52 54 56

°C 1.1 22 33 44 55 66 77 88 99 11.0 12.1 13.2




Mid-century temperatures will be warmer
with increases ranging from 3 to 4 F relative to past norms

' Hadley Centre
Climate Model

!c?')é Version 3 (HadCM3)

Had
Cen

-
el -~

Mid-Atlantic’s mid-century
temperature increase

°F 3.0 3.5 4.0

Loy °C 1.67 1.94 2.22
LN e OGNy .
5 T ,',i‘)‘-‘f&:’s 4 4

Mid-century increase in mean annual temperature
°F 3.0 3.5 4.0

—l N —

°C 1.67 1.94 2.22




A warmer climate means more extremes
daily max temperatures may approach 111 F by century’s end
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Mid-Atlantic growing seasons are modest
with the average length being 200 days (Apr. 15 to Oct. 30)

' Hadley Centre

@ Climate Model
ire Version 3 (HadCM3)

Had
Cen

Mid-Atlantic’s historical

growing season length
- days 120 195 270

Mean growing season length (1960 to 1989)

days 120 180 240 270 300




Mid-century growing seasons will expand
with the average season approaching 240 days

' Hadley Centre

I_wl@m Climate Model
cad® Version 3 (HadCM3)

Mid-Atlantic’s mid-century
growing season length

‘%s, days 120 240 300
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IMean growing season length (2015 to 2044)

days 120 180 240 270 300




Unabated expansion through late century
By 2100, the growing season could encompass the entire year

1550 1975 240)0/0) 2025 2050 2075 2100



Days with frost will greatly diminish
By 2100, only 60 days per year may be cold enough for frost
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The Mid-Atlantic gets year-round rainfall
mean annual precipitation is about 42 in per year

Hadley Centre
Climate Model

Hadl

Centre Version 3 (HadCM3)
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Mid-Atlantic’s historical
precipitation range
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Mean annual precipitation (1960 to 1989)
in 35 38 40 42 45 47 50
- N

mm 389 965 1016 1067 1143 1194 1270



Mid-century will be wetter
with the region-wide average rising to 44 in per year

o

= Hadley Centre ' |‘
Climate Model

Hag![% Version 3 (HadCM3)
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Mid-Atlantic’s mid-century
precipitation range
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IMean annual precipitation (2015 to 2044)
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Mid-century will be wetter

o

= Hadley Centre

m Climate Model

Hadley Viersion 3 (HadCM3)

A, Mid-Atlantic’s mid-century
§ -t LRI precipitation increase

1

1

1

‘ 4

I ! i B :

= o sae " ——
i SN (G : % 5 10 15
: 3 ;

; 1

; 1

i 1

A A
.F"' i < _‘g“ v
s y ] : 3 |
_f," a -
A e YT R
---}:‘;-i-:--_--------_--_'!- ________________
_aSgy, *

% 5 10 15




Daily rains of one inch will be more routine
with 5 more such days by the year 2100

Days per year with rainfall >

Ul

Y
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More frequent 20-year storms (~5 in/day)

with a 3-fold increase in frequency expected by 2100

. .\-_\'_‘\

s

Northeast

3y Jdte'century, events ‘
mgecurred once in 20
years mayfapg .D_rt. I_,_
to four times as often.
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Future change multiplier

1 2 3 4

5 6 7
I N

Wuebbles et al., 2014 (BAMS); US National Climate Assessment, 2014




Paradoxically, the future also will be drier
Evaporative demand will greatly overwhelm inputs from rain
Longer dry spells Increased risk of drought

- &

Soll Moisture (SM-30cm)

Change in max consecutive dry days (%)
D E——— Standardized soil moisture (0-30 cm; deviations from 20t

20 5 10 S0 v 20 century mean) for 2090 to 2099 using the RCP 8.5 emissions
scenario (Cook et al., 2015; Science Advances).

More than 80% of climate Take home point: more rain is needed
models suggest that successive to keep pace with rising evaporative
dry days will rise by 5 to 10%. demand (Sherwood and Fu, 2014).

US National Climate Assessment, 2014; Sherwood and Fu, 2014




In summary, our climate is on the move
with late-century climates resembling those of the deep south
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Climate Central: £:2080.to 2099: southern AL
Climate Central:



http://www.climatecentral.org/news/winter-is-losing-its-cool-18635
http://www.climatecentral.org/news/summer-temperatures-co2-emissions-1001-cities-16583

USDA-NRCS Adaptation Workbook

Helping land-owners adapt to and mitigate climate change

Z. Adaptation Workbook

Structured Process and Actionable Prod

C rJJ]rJe version of the workbook Is now available via Adaptation Assistance on
e USDA Climate Hubs web:, ir=- http://www.climatehubs.oce.usda.gov/

Slide courtesy of Dan Dostie (PA-NRCS)


http://www.climatehubs.oce.usda.gov/

How can | track projected changes?
some tools to track short- and long-term climate projections

SIFJOI'E Eerfﬂ (W?” | | P National WaatharSarvi.
J\JOr\r\J ]\J_JFL)H_J] Weath

http://www.cpc.ncep.noaa.gov/

Short term (Weeks teormonths)
Cornellis Climate Smart Farming:
Decision Support 1oels 1or farmers. . )

o >R - - 5 Climate Smart Farming
http://climatesmartfarming.org/ A project of Cornell University

=
~
>)

LONg term

NOAA'S Climate Resili E U.S. Climate
Resnlnence
ﬁu Toolkit

or the continentalrUnitec
https://toolkit.climate.gov/



http://climatesmartfarming.org/
http://www.cpc.ncep.noaa.gov/
https://toolkit.climate.gov/
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