Making Cover Crops Profitable

NEVIN DAWSON
SUSTAINABLE AGRICULTURE COORDINATOR
Raise your hand if...

- You are a farmer
- You are an ag service provider
- You have a basic understanding of soil health
- You have grown cover crops
- You have grown cover crop cocktails
- You know everything about cover crops
Soil health

- **Microbes:** FBI
 - **Fungi**
 - Feed on dead OM
 - Attack other microbes
 - Symbiosis w/ plant roots
 - Particle stickiness
 - **Bacteria**
 - Feed on OM
 - Store/cycle nitrogen
 - Decompose pesticides
- **Invertebrates**
 - Cycle nitrogen
 - Shred OM
 - Create pores
 - Particle stickiness
Soil health

- Organic matter
 - FBI food
 - Nutrient stickiness
 - Particle stickiness
 - Carbon sink
 - Water storage
 - Water infiltration
 - Compaction mitigation
Soil health

- Aggregate stability
 - Pore space
 - Water infiltration
- Limited disturbance
 - Allow Nature to do its job
 - Limit tillage as much as possible
 - Keep decomposition slow and steady
Why plant cover crops?

- Weed Suppression
- Protecting soil from rain or runoff
- Improving soil aggregate stability
- Reducing surface crusting
- Adding active organic matter
- Breaking hardpan
- Fixing nitrogen
- Scavenging soil nitrogen
- Suppressing soil diseases and pests
Weed suppression

- Rapidly established cover crops
- Allelopathy (e.g., hairy vetch residue)

A polyculture of crimson clover, cereal rye and hairy vetch used as a green manure cover crop for sweet corn, one week before termination. Photo credit: Danielle Treadwell, University of Florida.
Protecting soil from rain or runoff

- Broad leaves to intercept rain
- Robust root system to hold surface soil

Herefordshire, England
Improving soil aggregate stability

- Active exudation of glues and fungus food from roots
Reducing surface crusting

- Shallow fibrous root system
Adding active organic matter

- High biomass with mixture of quickly and slowly-decomposing plants
Soil Organic Matter

Organic matter is 1-6% of total soil mass

“*The living, the dead, and the very dead*”
Vermont Agric Exp Sta Bulletin 135, 1908
Breaking hardpan

- Deep roots that swell during growth
Fixing Nitrogen

- Legumes with high biomass and active fixation in farm fields

Nape Mothapo, North Carolina State University
Scavenging soil nitrogen (and phosphorus)

- Active growth in fall and good nitrogen storage over winter
Suppressing soil diseases and pests

- Support beneficial soil microbes
- Produce suppressive compounds (biofumigant)
 - E.g., mustards, rapeseed, sudangrass
 - Flail mower chopping and immediate incorporation (cultipacker or water, w/in 15 min.)
- Chemical and enzyme in cell walls come in contact and create toxin
- Affects soil-borne pathogens and weed seeds
Which crop(s) to use?

- Management goal
- Growing habit
- Planting time
- Sowing method
- Duration
- Kill method/time
- Following crop
Management goal

► Weed Suppression
► Protecting soil from rain or runoff
► Improving soil aggregate stability
► Reducing surface crusting
► Adding active organic matter

► Breaking hardpan
► Fixing nitrogen
► Scavenging soil nitrogen
► Suppressing soil diseases and pests

Prioritize!
Growing habit

- Upright
- Upright-spreading
- Prostrate
Planting time

- Early summer
- Mid to late summer
- Late summer
- Early fall
- Fall
- Spring
Early summer

- Good for rebuilding degraded soil
- Fills in gaps in rotation
- Late May/early June: sudangrass (OM, nematodes, penetrating hardpan, 70 days); buckwheat (weeds, mellowing, 40 days)
Mid to late summer

- Improve soil instead of building weed seed bank
- Scavenge N, add OM
- July: buckwheat or sudangrass
- August: BW, SG, or annual rye grass (overwintering, creates sod, weeds, flood tolerance; needs N)
- Consider interseeding
Late summer: legumes

- Build next year’s N (establish in fall, fix in May): red clover (overseeding, low water, soil compaction) and hairy vetch (may become weedy in small grains); 100-150 lb/ac N
- Nurse crop (wheat, oats, rye)
Late summer: crucifers

- Diseases, winter weeds, tilth, pump N from depth (must die in spring for availability)
- Low price/lb and lb/ac
- May or may not winter kill
Early fall (before Oct. 1/Oct 15)

► Brassicas

► Forage radish (best before Sept, OK in Sept, drills large hole, scavenges N, may not winter kill, can mix with oats or rye)

► Mustard (should winter kill, thick cover, not a biofumigant when planted in fall, yellow for height, brown for cover)

► Arugula (suppresses nematodes, slow establishment)
Early fall (before Oct. 1/Oct 15)

- Small grains (winter cover, erosion, spring weeds)
 - Oats (quick cover, winter kill)
 - Wheat (later seeding, overwinters, slower growing)
 - Triticale (earlier seeding, overwinters, slower growing)
- Rye (difficult conditions, abundant biomass, weeds, may suppress crop yield)
Late Fall (after Oct. 1/Oct 15)

- Last resort—best to plant earlier
- Rye (winter soil protection, higher seeding rate: 250 lb/ac instead of 80 lb/ac, drill v. broadcast, may suppress crops)
- Wheat (little growth, nurse crop for frost-seeded red clover)
- Spelt (some cold tolerance)
Spring

- Medium red clover
- Biofumigant mustard (needs warm soil and to bloom; incorporate before seed set)
Sowing method

- Broadcast
- Drilling
- Aerial
- Interseeding
- Frost seeding
Duration

- Time to flower, seed set
- Woody stems
- Sudangrass: 70 days
- Buckwheat: 40 days
Kill method/time

- Spray v. organic
- May need to allow time between kill and planting for decomposition
- May need a back up plan for winter kill fail
Following crop

- **Seedbed**
 - Buckwheat mellows the soil and breaks down quickly
 - Sorghum leaves lumpy crowns

- **N needs**
 - Legume v. non-legume
Also consider species variety traits

- Reduced seed viability
- Decrease weed potential
- Increased biofumigant compounds
Cover crop improvement

- Fertilize
- Mow
 - Root dieback creates flush of food for soil microorganisms
Cocktails

- Multiple species add multiple benefits
- Create hybrid effect
A conceptual diagram of our research hypotheses that:

A) Increasing cover crop diversity will increase the beneficial functions derived from cover crops and that this relationship will be non-linear, i.e., there is a level of diversity at which adding more diversity does not significantly improve the mixture function or outweigh management or monetary costs; and

B) Using a hypothetical example, a single species may maximize one or two functions, whereas mixtures will provide a broader suite of functions.
CC benefits/Mgmt goals

- Weed Suppression
- Protecting soil from rain or runoff
- Improving soil aggregate stability
- Reducing surface crusting
- Adding active organic matter

- to soil
 - Breaking hardpan
 - Fixing nitrogen
 - Scavenging soil nitrogen
 - Suppressing soil diseases and pests
- ...And one more
Management goal

Increase profit!
CC benefits/Mgmt goals

- Weed Suppression
- Protecting soil from rain or runoff
- Improving soil aggregate stability
- Reducing surface crusting
- Adding active organic matter
- Breaking hardpan
- Fixing nitrogen
- Scavenging soil nitrogen
- Suppressing soil diseases and pests
WHEAT BUDGET

PER ACRE FOR 2014

<table>
<thead>
<tr>
<th>ITEM</th>
<th>UNIT</th>
<th>QUANTITY</th>
<th>PRICE</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>GROSS INCOME</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WHEAT</td>
<td>BUSHEL</td>
<td>75</td>
<td>$7.13</td>
<td>$536.22</td>
</tr>
<tr>
<td>VARIABLE COSTS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SEED</td>
<td>POUND</td>
<td>150</td>
<td>$0.39</td>
<td>$58.50</td>
</tr>
<tr>
<td>SOIL TESTING</td>
<td>ACRE</td>
<td>1</td>
<td>$0.30</td>
<td>$0.30</td>
</tr>
<tr>
<td>NITROGEN</td>
<td>POUND</td>
<td>70</td>
<td>$0.55</td>
<td>$38.50</td>
</tr>
<tr>
<td>PHOSPHATE</td>
<td>POUND</td>
<td>40</td>
<td>$0.65</td>
<td>$26.00</td>
</tr>
<tr>
<td>POTASH</td>
<td>POUND</td>
<td>40</td>
<td>$0.36</td>
<td>$14.40</td>
</tr>
<tr>
<td>LIME</td>
<td>TON</td>
<td>0.5</td>
<td>$45.00</td>
<td>$22.50</td>
</tr>
<tr>
<td>HARMONY GT XP</td>
<td>OUNCE</td>
<td>0.5</td>
<td>$11.00</td>
<td>$5.50</td>
</tr>
<tr>
<td>TILT</td>
<td>OUNCE</td>
<td>4</td>
<td>$1.95</td>
<td>$7.72</td>
</tr>
<tr>
<td>WARRIOR</td>
<td>OUNCE</td>
<td>3</td>
<td>$1.95</td>
<td>$5.85</td>
</tr>
<tr>
<td>OSPREY</td>
<td>OUNCE</td>
<td>4.75</td>
<td>$3.03</td>
<td>$14.39</td>
</tr>
<tr>
<td>CROP INSURANCE (RP 75%)</td>
<td>ACRE</td>
<td>1.00</td>
<td>$11.97</td>
<td>$11.97</td>
</tr>
<tr>
<td>INTEREST ON OPERATING CAPITAL</td>
<td></td>
<td>0.5</td>
<td>8.5%</td>
<td>$8.23</td>
</tr>
<tr>
<td>TOTAL VARIABLE COSTS LISTED ABOVE</td>
<td></td>
<td></td>
<td></td>
<td>$213.86</td>
</tr>
<tr>
<td>FIXED/OVERHEAD COSTS (CUSTOM RATES ARE USED AS A PROXY FOR FIELD OPERATION COSTS)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SPREADING FERTILIZER</td>
<td>ACRE</td>
<td>1</td>
<td>$8.78</td>
<td>$8.78</td>
</tr>
<tr>
<td>VERTICAL TILLAGE</td>
<td>ACRE</td>
<td>2</td>
<td>$18.41</td>
<td>$36.82</td>
</tr>
<tr>
<td>BROADCAST SEEDING</td>
<td>ACRE</td>
<td>1</td>
<td>$14.49</td>
<td>$14.49</td>
</tr>
<tr>
<td>PESTICIDE APPLICATION</td>
<td>ACRE</td>
<td>2</td>
<td>$8.99</td>
<td>$17.98</td>
</tr>
<tr>
<td>HARVESTING</td>
<td>ACRE</td>
<td>1</td>
<td>$32.01</td>
<td>$32.01</td>
</tr>
<tr>
<td>HAULING</td>
<td>BUSHEL</td>
<td>75</td>
<td>$0.15</td>
<td>$11.25</td>
</tr>
<tr>
<td>INTEREST ON FALL CUSTOM CHARGES</td>
<td></td>
<td>0.5</td>
<td>8.5%</td>
<td>$3.32</td>
</tr>
<tr>
<td>LAND CHARGE</td>
<td>ACRE</td>
<td>1</td>
<td>$98.00</td>
<td>$98.00</td>
</tr>
<tr>
<td>TOTAL FIXED COST LISTED ABOVE</td>
<td></td>
<td></td>
<td></td>
<td>$222.65</td>
</tr>
<tr>
<td>TOTAL VARIABLE AND FIXED COST LISTED ABOVE</td>
<td></td>
<td></td>
<td></td>
<td>$436.51</td>
</tr>
<tr>
<td>NET INCOME OVER VARIABLE & FIXED COSTS LISTED ABOVE</td>
<td></td>
<td></td>
<td></td>
<td>$99.74</td>
</tr>
<tr>
<td>PRICES</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NET INCOME ABOVE VARIABLE AND YIELDS</td>
<td></td>
<td>$5.36</td>
<td>$7.15</td>
<td>$8.94</td>
</tr>
<tr>
<td>FIXED COSTS LISTED ABOVE FOR 56.25</td>
<td>$(134.87)</td>
<td>$(34.32)</td>
<td>$(66.22)</td>
<td></td>
</tr>
<tr>
<td>VARIOUS YIELDS AND PRICES</td>
<td>75</td>
<td>$(34.32)</td>
<td>$99.74</td>
<td>$233.80</td>
</tr>
<tr>
<td>93.75</td>
<td>66.22</td>
<td>$233.80</td>
<td>$401.38</td>
<td></td>
</tr>
</tbody>
</table>

ANALYSIS

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>BREAK EVEN</td>
<td>$5.02</td>
</tr>
<tr>
<td>VARIABLE COSTS PER UNIT</td>
<td>$2.85</td>
</tr>
<tr>
<td>OVERHEAD COST PER UNIT</td>
<td>$2.97</td>
</tr>
<tr>
<td>TOTAL COST PER UNIT</td>
<td>$5.82</td>
</tr>
<tr>
<td>PROFIT PER UNIT</td>
<td>$1.33</td>
</tr>
</tbody>
</table>

[Crop Budget](https://extension.umd.edu/grainmarketing/crop-budgets)
Long Term Soil Fertility and Water Storage Benefits

Cereal Rye-Soybeans
Cereal Rye/crimson clover/brassica-Corn

Years

$/acre

Soil Fertility Benefit
Water Storage Benefit
Amortized Soil Fertility Benefit
Amortized Water Storage Benefit
Financial Analysis Net Benefits

Cereal Rye-Soybeans
Cereal Rye/crimson clover/brassica-Corn
MD Cover Crop Program

- MD Ag Water Quality Cost-Share (MACS)
- Incentive payments for planting CCs after summer crop
 - Deadline in early November
 - Additional incentive for earlier planting
 - Kill-down: 3/1-6/1
Barley, canola, rapeseed, kale, rye, ryegrass, spring oats, triticale, forage radish and wheat may be used as cover crops.

New in 2014: mixes allowed

What do these have in common?
2014-2015: 1,849 farmers, 641,400 acres
<table>
<thead>
<tr>
<th>TRADITIONAL COVER CROPS PAYMENT OPTIONS</th>
<th>NO-TILL</th>
<th>CONVENTIONAL</th>
<th>BROADCAST WITH LIGHT, MINIMUM OR VERTICAL TILLAGE</th>
<th>AERIAL</th>
<th>BROADCAST STALK CHOP/AERIAL GROUND</th>
</tr>
</thead>
<tbody>
<tr>
<td>Base payment:</td>
<td>$45/acre</td>
<td>$45/acre</td>
<td>$45/acre</td>
<td>$50/acre</td>
<td>$45/acre</td>
</tr>
<tr>
<td>Plant by October 1, add: or</td>
<td>$20/acre</td>
<td>$10/acre</td>
<td>$10/acre</td>
<td>$0/acre</td>
<td>$0/acre</td>
</tr>
<tr>
<td>Plant by October 15, add:</td>
<td>$10/acre</td>
<td>$5/acre</td>
<td>$5/acre</td>
<td>$0/acre</td>
<td>$0/acre</td>
</tr>
<tr>
<td>Plant fields where manure was used in spring, add:</td>
<td>$10/acre</td>
<td>$10/acre</td>
<td>$10/acre</td>
<td>$10/acre</td>
<td>$10/acre</td>
</tr>
<tr>
<td>Plant in field with previous corn, tobacco or vegetable crop, add:</td>
<td>$5/acre</td>
<td>$5/acre</td>
<td>$5/acre</td>
<td>$5/acre</td>
<td>$5/acre</td>
</tr>
<tr>
<td>Plant rye (no mixes), add:</td>
<td>$10/acre</td>
<td>$10/acre</td>
<td>$10/acre</td>
<td>$10/acre</td>
<td>$10/acre</td>
</tr>
<tr>
<td>Farm located in targeted watershed, add:</td>
<td>$10/acre</td>
<td>$10/acre</td>
<td>$10/acre</td>
<td>$10/acre</td>
<td>$10/acre</td>
</tr>
<tr>
<td>Maximum Payment Amount:</td>
<td>$100/acre</td>
<td>$90/acre</td>
<td>$90/acre</td>
<td>$85/acre</td>
<td>$80/acre</td>
</tr>
</tbody>
</table>

HARVESTED COVER CROPS

This program option is available to farmers who want to harvest their cover crops. Farmers should provide their best estimate of acres they plan to harvest on their applications.

- **Payment:** $25/acre ($10/acre bonus if rye is planted exclusively as the cover crop)
- **Acreage Cap:** None
- **Fertilizer Application:** After March 1, 2015. Early fertilization at green up is prohibited.
- **Certification with SCD:** Within one week of planting and no later than November 12, 2014.
Targeted watershed map
Cover Crop Anthem

Questions?

Nevin Dawson
ndawson@umd.edu
Caroline Co. office
410-479-4030
A Farmer’s Perspective

AARON COOPER
CUTFRESH ORGANICS
EDEN, MD
WWW.CUTFRESHORGANICS.COM

AG TECH SUPERVISOR
SMALL GRAINS PROGRAM
UMD, LOWER EASTERN SHORE REC
Operated by Aaron and Betsey Cooper

165 acres
- 2/3 certified
- 1/3 transitional

Vegetables and grain

Machine harvest
7 or more crops
- Round green beans, corn, soybeans, cowpeas, wheat, barley, grain sorghum

Custom feed mixing/grinding

Work w/ portable soybean roaster

Wholesale only
Fa: Fallingston sandy loam
Wd: Woodstown sandy loam
Hb: Hambrook sandy loam
Rs: Runclint sand
Ru: Runclint loamy sand
Cover Crops

- Usually don’t qualify for MD incentive payments
- Cocktails
 - Rye, Austrian pea, tillage radish
CC kill/Weed Management

- Rolling basket or borrowed roller (from Univ. of MD Eastern Shore)
 - Good for broadleaf, bad for grass
- Disking
 - Pearl millet not killed
Field 8

- Orchard grass/clover
- 3 year organic transition
- Plowed down
Field 8

- Planted in soybeans
 - Conventional tillage
- Cover crop planted after harvest
 - Rye/Austrian pea
- Some strips rolled
- Some strips tilled (disked twice)
Field 8

- Corn planted in May
Southern corn rootworm?
Soil texture?
Soil fertility?
Soil temperature?
Rye allelopathy?
Timing?
Wildlife damage?
CC management objectives

- Increase organic matter
 - E.g. Field 8
 - 2010: 1.9-2.7%
 - 2012: 1.6%
 - 2013: 1.5-1.6%

- Improve soil health

- Break up plow pan at 6” depth
Questions?

Aaron cooper
Cutfresh organics
Eden, MD
www.cutfreshorganics.com

Ag Tech Supervisor
Small Grains Program
UMD, Lower Eastern Shore REC