Impact of Light on Poultry

Bob Alphin
Department of Animal & Food Sciences
Newark, Delaware, USA
Introduction

• What is light?

• Impact of lighting on raising poultry
 – Impacts biological rhythms
 – Impacts physiology: growth, behavior & reproduction

• Important light/lighting characteristics
 – Color
 – Brightness
 – Duration
Light

• Electromagnetic waves (radiation)
 – Visible light small part of full light spectrum
• Visible light (optical radiation)
 ~380 – 780 nanometers (nm)
 Differently perceived by humans and chickens
How Chickens “See” Light

- Two main ways light signals the brain in birds
 - Eyes
 - Extra-retinal receptors = important endocrine glands
 (glands that secret hormones directly into the blood)
Avian Vision

• Chickens have large, highly sensitive eyes
• Flattened shape of eyes increase visual acuity
• Birds have a higher sensitivity than humans
• Rods and cones are structures found in retina
 – More rods than cones = low light vision
 – Cones used for daylight & color vision
Extra-Retinal Light Receptors

Endocrine Glands

- Pineal Gland
- Hypothalamus
- Effect Behavior, Growth & Reproduction
Pathways of Light Reception Effecting Endocrine System
Endocrine Glands

- Light penetrates through the top of skull & stimulates pineal gland & hypothalamus
- Pineal gland light’s sensitivity is used to regulate
 - Daily behavior cycles
- Hypothalamus
 - Regulates broiler metabolism & reproduction
Important Light Characteristics

- Color (wavelength)
- Brightness (intensity)
- Duration (photoperiod)
Color of Light

- Color = wavelength of light
- Poultry have different sensitivity to different colors
 - Poultry perceive light & color differently than humans
 - Unlike humans, birds are sensitive to ultra violet (UV) light
 - Poultry have greater sensitivity to multiple regions of visible light
 - Therefore perceive light from some bulbs as brighter than other bulbs (of same lumens), and more intensely than humans
Impact of Color on Broilers

• Studies using monochromatic light demonstrated superior growth for broilers given blue or green light
 – Some studies suggest broilers are less active under blue or green light than under red or white light
 – Yellow-red color may ↑ activity

• Field performance under different commercial colored lamps have not yielded significant differences yet
 – 2700-3000 vs 4000-5000 K lamps continue to be tested but no clear winners
 – Still opportunities for improvement = LEDs and dimming
Brightness = Intensity

- Foot candles (fc) or lux (1 lx = 0.09 fc)
- Lumen = std. measure of light bulb outputs
- On average, chicken (37%), duck (30%), and turkey (16%) more sensitive to light than in humans
Light Intensity

Impacts rhythms of feeding behavior

• Higher levels are used to stimulate chicks to be more active, eat and drink more after placement

• Minimum level required to:
 • Stimulate pineal gland & hypothalamus
 • Consideration for growers working in houses
Endocrine Light Stimulation

• Light intensity must be strong enough to penetrate skull & cranial tissues to reach pineal gland & hypothalamus
 – primarily by longer wavelengths = orange-red
 • large proportion of full-spectrum white light/incandescent output
 – retinal tissue in the eye plays important role in circadian rhythm
 • allows feedback at very low light levels (~0.1-.3 fc)
Light Stimulation

Optic nerve

Hypothalamus

Pineal Gland

Growth, metabolism & gonadal development

Circadian rhythm, metabolism & stress

Growth, metabolism & gonadal development
Pineal Gland

Presence or absence of light utilized by pineal to:

- Function as pacemaker for circadian rhythm
 - 24 hour cycle = active day & inactive night
- Controls melatonin hormone = dark regulated
 - Impacts night time body temperature
 - Involved in sleep regulation
 - May impact stress levels & immunity
Minimum Light Intensities

- Research indicates there are minimum thresholds for light intensity
- Management/performance guides recommend
 - 2-5 ftc (20-55 lx) for starting chicks
 - gradually reducing down to 0.1 fc (1 lx) for older broilers
 - table egg layers require 0.5-1 fc (5-10 lx)
 - broiler breeders require 1.5-4 fc (17-45 lx) for fertile egg production
- Uniform light pattern important when choosing bulb design
Duration = Photoperiod

- **Period of illumination = day length/artificial lighting**
 - Daily light/darkness cycle strongest environmental stimulus for timing of behavior
 - Impacting feeding, drinking & sleep behavior
- Impacts hypothalamus
- Lighting programs can impact broiler performance
Hypothalamus

• Sensitive to photoperiod
• Regulates pituitary gland which regulates
 – Growth hormone
 – Thyroid: key controller of metabolism & body temperature
 – Gonadal development = egg & sperm production
 • Chickens are long day breeders
Broiler Lighting Programs

• Conventional = continuous or near-continuous 23L:1D
 – Studies showed heritage lines of broilers responded \(\uparrow \) growth
 – Modern strains respond differently = \(\downarrow \) growth

• Short daylength followed by long day
 – 6L:19D to 21 days; 23L:1D remainder
 – Better liveability and feed efficiency

• Intermittent = multiple cycles of 1L:3D, 2L:4D
 – Better feed efficiency, reduced activity
 – Suggested better use of nutrients because more “meal-feeding”

Commercial programs combine photoperiod & dimming
Impact of Different Lighting Programs

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Conventional 23L:1D*</th>
<th>Short Day 6L to 21 days 23L at 22 days to market*</th>
<th>Intermittent*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Feed Intake</td>
<td>100</td>
<td>98</td>
<td>96</td>
</tr>
<tr>
<td>Body Weight</td>
<td>100</td>
<td>100</td>
<td>101</td>
</tr>
<tr>
<td>Feed Efficiency**</td>
<td>100</td>
<td>102</td>
<td>106</td>
</tr>
<tr>
<td>Liveability</td>
<td>100</td>
<td>105</td>
<td>100</td>
</tr>
<tr>
<td>Leg problems</td>
<td>-</td>
<td>Reduced</td>
<td>same</td>
</tr>
<tr>
<td>Ascites</td>
<td>-</td>
<td>Same</td>
<td>reduced</td>
</tr>
<tr>
<td>Electricity savings</td>
<td>-</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>Light proofing house recomended</td>
<td>-</td>
<td>yes</td>
<td>preferred</td>
</tr>
</tbody>
</table>

*No dimming (no change in light intensity)

**Higher feed efficiency = lower feed conversion
Summary

Combining lighting characteristics = greater impact

- Lighting programs combine photoperiod & dimming (intensity) to impact broiler behavior, performance & welfare
- Impact of color still being studied
- When purchasing bulbs consider
 - Need minimum output levels & uniformity
 - Dimming performance
Questions?

Bob Alphin
107 Allen Laboratory
601 Sincock Lane
Newark, DE 19716-2150
302-831-0825
ralphin@udel.edu