Excess nitrogen in a cropping system can contaminate surface water and ground water and waste farmers' money. Management and conservation of nitrogen are complex tasks, but they have economic and environmental payoffs.

Nitrogen is difficult to manage because it is continually being changed by chemical reactions and microorganisms in the soil. At any time, it will exist in many different chemical forms. These forms fall into two categories, inorganic and organic nitrogen.

Inorganic nitrogen forms, specifically nitrate (NO$_3^-$) and ammonium (NH$_4^+$), are immediately available for plant uptake. Most crop plants prefer nitrate to ammonium, but ammonium can be transformed into nitrate in the soil through microbial action.

Organic nitrogen is not immediately plant available. It must be mineralized, changed into an inorganic form, before it can be taken up by a plant.

The nitrogen cycle illustrates the series of changes that nitrogen undergoes (Figure 1).

The Problem

Inorganic, plant-available forms of nitrogen (nitrate and ammonium) are easily lost from the cropping system. Nitrate escapes from the root zone by leaching, that is by moving with the water in the soil. Both nitrate and ammonium can be volatilized, lost to the atmosphere in gaseous forms: nitrate, by conversion to nitrogen gas through microbial denitrification, and ammonium, by conversion to ammonia gas.

Leaching, volatilization, and denitrification are means by which nitrogen can be permanently removed from the system.

Im mobilization is the temporary transformation of nitrogen from its plant-available, inorganic form into microbial biomass, an organic form. As the microbes die and decompose, they release the nitrogen, in an inorganic form, back into the soil.

Normally the quantity of inorganic nitrogen in soil is low, approximately 1 to 2 percent of the total soil nitrogen. The naturally occurring level of inorganic nitrogen is not sufficient for intensive crop growth; therefore, farmers add nitrogen by growing legumes or supplementing with manure, chemical fertilizers, or sewage sludge. By understanding the nitrogen cycle, growers can optimize strategies that balance nitrogen inputs and outputs and reduce potential environmental impact and economic loss.

How Nitrogen Is Lost

It is important that growers understand how nitrogen is lost from the cropping system, so that they can minimize economic loss and possible environmental degradation.

Leaching. Nitrate is a negatively charged ion, similar to the negative end of a magnet. Like a magnet, negatively charged nitrate is not attracted to soil's clay and humus,
which are also negatively charged. When rain or irrigation water percolates down through the soil profile, it can take nitrate along with it—out of the root zone, down to the ground water and, potentially, out to the Chesapeake Bay. Ammonium, on the other hand, is a positively charged ion, attracted to the soil's clay and humus and, therefore, is less likely to leach.

Volatilization. Ammonium present in fertilizers, such as urea-ammonium nitrate, urea, and manures, can be changed to ammonia gas and lost to the atmosphere (volatilized) if the fertilizers are not incorporated into the soil.

Immobilization. Immobilization is the temporary capture of nitrogen by soil microbes, the regulators of the nitrogen cycle. Tilling in materials with a high carbon and low nitrogen content, such as small-grain straw, will stimulate microbial growth temporarily and immobilize the available soil nitrogen. Because of this, corn planted after incorporation of small-grain straw may display temporary signs of nitrogen deficiency.

Denitrification. Denitrification is the loss of nitrogen from the soil to the atmosphere under extremely wet conditions. In soil that is waterlogged due to excessive rainfall, a depression in the field, or poor drainage, soil microbes will quickly change nitrate (NO_3^-) to nitrous oxide (N_2O) and nitrogen gas (N_2). These forms of nitrogen are not plant available and, because they are gases, may be lost to the atmosphere.

How Nitrogen Is Provided
To produce crops efficiently, it is necessary to understand not only how nitrogen is lost, but also how it is provided and can be manipulated in a well-managed system. Nitrogen sources and management strategies are summarized here.

Mineralization. The first step in the process that changes organic nitrogen to inorganic nitrogen is mineralization. Organic nitrogen from soil organic matter (microorganisms, crop residue, manure, and sewage sludge) must be mineralized, transformed to a simpler inorganic form (ammonium) before it can be plant-available. This form can then be changed to nitrate.

The transformation of the organic form to the inorganic form is controlled by the activity of soil microorganisms and, therefore, mineralization happens more quickly with warm temperatures, moist aerobic conditions, and a moderate pH. It virtually ceases when soil temperatures fall below 35°F.

When manure is applied to a crop, only a portion of the organic nitrogen in it is available (through conversion to plant-available nitrogen) in the first year. Manure mineralizes slowly, providing inorganic nitrogen over several years in decreasing quantities. The amount of nitrogen available depends on the type of manure used.

As the nitrogen is made plant-available through the mineralization process, either it can be used by a crop or it can be lost through leaching, volatilization, and denitrification.

Biological Nitrogen Fixation. The Earth's atmosphere, including the air we breathe, is almost 80 percent nitrogen gas. Some microorganisms capture and trans-
form or “fix” nitrogen gas into the proteins they need to live and then release it as plant-available nitrogen when they die. One group of nitrogen-fixing microorganisms are bacteria called *Rhizobia*. *Rhizobia* live within the roots of legumes, such as alfalfa, clover, soybeans, peas, and vetch, and provide nitrogen for these crops. Alfalfa, for example, with the help of *Rhizobia* bacteria, typically fixes approximately 150 to 250 pounds of nitrogen from the atmosphere per acre per year.

Residual Nitrogen and Cover Crops. Residual nitrogen refers to inorganic nitrogen (nitrate and ammonium) that remains in the soil after the crop has been harvested. Nitrate and ammonium might remain in the soil for several reasons: the general inefficiency of plant uptake, excess fertilizer application, or summer drought causing reduced crop uptake.

Cover crops are grasses, legumes, or mixes grown during the late fall and winter to take up excess nutrients, reduce soil erosion, and improve soil tilth.

Some cover crops can be used to absorb residual nitrogen during months when field crops are not grown. Studies in Maryland have shown that a rye cover crop can reduce nitrogen leaching by 65 percent. A future issue of this newsletter will discuss some of the management issues concerning cover crops, including choice of species and effects of planting and kill dates.

Balancing Supply and Demand

Split-Application: Timing Is Everything

In the spring, a corn seedling uses the nutrients stored in the seed to grow. For approximately a month after planting, corn has a shallow root system and grows at a relatively slow rate. During this early period, seedings do not take up much nitrogen from the soil. When the corn is approximately a month old, it begins to grow rapidly. It is at this time that the crop requires an adequate supply of nitrogen and has the root system needed to absorb it.

Synchronizing the presence of nitrogen and the period of rapid crop uptake can maximize nitrogen’s use and minimize its potential for loss. Split-applying nitrogen fertilizer, applying a small quantity (≤50 pounds per acre) as a starter and the rest as a side-dress at the appropriate crop stage, synchronizes the time that the nitrogen is supplied with the time that the crop’s nitrogen is needed.

Soil Tests

Because nitrogen changes forms according to microbial activity, and microbial activity is favored by the relatively moist, mild environmental conditions of Maryland, a soil test before planting cannot reliably predict how much nitrogen will be available at the time of rapid crop growth.

Instead of soil tests, nitrogen fertilizer recommendations are based on:

1. Yield potential of the crop and soil, and
2. Nitrogen credit for previous legume crops or organic nutrient sources like manure.

PSNT: Fine-Tuning the Nitrogen Requirement

How is an adequate amount of nitrogen determined? The pre-sidedress nitrate test (PSNT) is an inseason soil test for corn that is done prior to sidedressing.

In the spring, the corn has been planted, and has grown to between 6 and 12 inches (approximately 30 to 45 days), and is approaching its peak uptake period (see Figure 2). Meanwhile, as the soil warms, microbial activity increases and organic nitrogen begins to mineralize. All the sources—mineralized nitrogen and residual nitrogen from previous fertilization and crops—contribute to peak inorganic nitrogen levels. But will there be enough nitrate in the soil to satisfy the growth and yield requirements of the crop?

This period, immediately before rapid nitrate uptake and coinciding with peak soil nitrate levels, is the window of opportunity to perform a PSNT. A PSNT taken at this time will accurately measure the quantity of nitrate present in a specific field at a specific time and will allow a grower to determine if sidedressing is actually necessary. Then, if the PSNT shows that the soil nitrate level is inadequate for corn production, the test can be used to determine the appropriate side-dress nitrogen rate.

The goal of good nitrogen management is to synchronize the period of rapid crop uptake with the availability of an appropriate amount of inorganic nitrogen and to end the season with little residual nitrogen, thereby minimizing what is lost to the environment.

A PSNT does not account for the ammonium already present in soil or for organic nitrogen that will be mineralized later in the season. Because of this, a PSNT cannot recommend too little nitrogen.

Keeping Track of What Is Out There

Dave Herbst of Misty Meadows Farms in Washington County grows corn, soybeans, and small grains and raises 100 dairy cows that produce approximately 2 million gallons of manure per year. He has been using manure tests since they became available at the University of Maryland in 1985.
years ago, in an effort to use the residual nitrogen supplied by soybean crops and animal manure more efficiently, he started using PSNT.

In the past, "We were going on with 120 to 150 pounds of nitrogen," says Herbst, "and then we put herbicide down with additional fertilizer. To a large extent, we were disregarding the manure and legumes." Mr. Herbst found that the PSNT "really fine-tuned things" and gave him a good indication of the nitrogen level already in the field. Then, because he trusts the PSNT, he tends to follow his recommendations closely. "It's proven to me time and time again that...it's reliable enough to use."

 Issued in furtherance of Cooperative Extension work, acts of May 8 and June 30, 1914, in cooperation with the U.S. Department of Agriculture, University of Maryland, College Park, and local governments. Thomas A. Fretz, Director of Maryland Cooperative Extension, University of Maryland.

The University of Maryland is an equal opportunity educator and employer.

The University’s policies, programs, and activities are in conformance with pertinent Federal and State laws and regulations on nondiscrimination regarding race, color, religion, age, national origin, gender, and disability. Inquiries regarding compliance with Title VI of the Civil Rights Act of 1964, as amended, Title IX of the Educational Amendments, Section 504 of the Rehabilitation Act of 1973; and the Americans With Disabilities Act of 1990; or related legal requirements should be directed to the Director of Human Resources Management, Office of the Dean, College of Agriculture and Natural Resources, Symons Hall, College Park, MD 20742.

PSNT REQUIREMENTS

- Corn crop, 6 to 12 inches tall
- Sidedress fertilizer management
- No more than 50 pounds of nitrogen as commercial nitrogen fertilizer per acre applied at or before planting
- 1-foot sample depth

NUTRIENT MANAGER SUMMER 1995

ALLEGANY COUNTY
112 Baltimore Street, Suite 204
Cumberland, MD 21502
(301) 724-3320

ANNE ARUNDEL COUNTY
7320 Ruxton Highway Suite 210
Glen Burnie, MD 21061
(410) 222-6758

Baltimore County
9411 Van Buren Lane
 Cockeysville, MD 21030
(410) 688-1022

CALVERT COUNTY
P.O. Box 486
Prince Frederick, MD 20678
(410) 535-3662

CAROLINE COUNTY
207 South Third Street
Dentont, MD 21629
(410) 479-4050

CARROLL COUNTY
700 Agricultural Center
Westminster, MD 21157
(410) 388-2790
1-888-326-9545

CECIL COUNTY
129 E. Main St., Room 7
Elkton, MD 21921
(410) 996-5280

CHARLES COUNTY
9356 Chesapeake St., Suite 119
LaPlata, MD 20646
(301) 934-5403
Toll free (301) 753-8195

DORCHESTER COUNTY
P.O. Box 299
Cambridge, MD 21613
(410) 228-6900

FREDERICK COUNTY
330 Montevue Lane
Frederick, MD 21702
(301) 694-1594

GARRETT COUNTY
1916 Maryland Hwy., Suite A
Mt. Lake Park, MD 21550
(301) 334-9696

HARFORD COUNTY
P.O. Box 663
2355 Rock Spring Road
Forest Hill, MD 21050
(410) 686-0255

HOWARD COUNTY
3525-1 Lilac Mills Drive
Ellicott City, MD 21043
(410) 313-2707

KENT COUNTY
709 Morgantown Road Suite 202
Chester, MD 21619
(410) 778-1661

MONTGOMERY COUNTY
53410 Muncaster Road
Derwood, MD 20855
(301) 990-9638

PRINCE GEORGE’S COUNTY
6730 Clovering Drive
Clinton, MD 20735
(301) 888-9366

QUEEN ANNE’S COUNTY
505 Railroad Ave., Suite 4
Centreville, MD 21617
(410) 789-0165

ST. MARY’S COUNTY
P.O. Box 663
Leonardtown, MD 20650
(301) 475-4482

SOMERSET COUNTY
30730 Park Drive
Princess Anne, MD 21853
(410) 551-1550

TALBOT COUNTY
P.O. Box 319
Easton, MD 21601
(410) 822-1244

WASHINGTON COUNTY
7930 Sharpsburg Pike
Boonsboro, MD 21713
(301) 791-1304

WICOMICO COUNTY
P.O. Box 1696
Salisbury, MD 21802
(410) 749-6191

WORCESTER COUNTY
P.O. Box 219
Snow Hill, MD 21863
(410) 632-1972

HOME AND GARDEN INFORMATION CENTER
12065 Homewood Road
Ellicott City, MD 21042
1-800-342-2507