Welcome to our new newsletter for current issues in the landscape and garden. This newsletter is aimed at the home horticulture/master gardener audience. We will try to get it out twice monthly during the growing season. Mary Kay Malinoski and Dave Clement are coordinating it and please send any contributions to us. Jon Traunfeld will be contributing fruit and vegetable tips.

Current Observations in the Landscape:

Insects and Other Pests by Mary Kay Malinoski, Extension Specialist, Home and Garden Information Center (unless otherwise noted).

Fall webworm is everywhere this year!!

Fall webworm tent with caterpillars

Fall webworm (Hyphantria cunea) caterpillars may feed on more than 100 species of deciduous forest and shade trees. Mature larvae are about 1 inch long and may occur in two color forms: those with black heads are yellowish-white, and those with red heads are brown.

The caterpillars produce a web of fine silk over terminal branches. They only feed inside the web, which they enlarge as they grow. The first generation begins in May and is usually small. The second-generation caterpillars are present from August through October. Prune out webbed terminals as you see them. Pole pruners are useful for removing tents in trees. B.t. (Bacillus thuringiensis, var. Kurstaki), horticultural oil, or insecticidal soap is recommended to control young larvae in large infestations and protect beneficials. There are 75 species of predators and parasites that normally keep this pest below damaging levels. Whatever you do, don’t try to burn them out!!
Just a reminder that Japanese Beetles are still out there!

Hand pick beetles and drop them into soapy water. Start looking for damage in turf as the grubs are already out there feeding. Birds and skunks pulling up turf can be a good indicator of grubs. There are numerous other grubs in lawns besides Japanese beetles. The best way to reduce adult populations for next year is by controlling beetles in the grub stage. Look for products containing acelepryn which is very safe.

Congregation of Japanese beetles on hibiscus

Feeding damage on linden

Japanese beetle grub

Grubs and damage to turf
There are plenty of butterflies out in the landscape now. Joe pye weed and bronze fennel are great plants to attract butterflies and beneficial wasps into your yard.

Yellow form of the tiger swallowtail

Black form of the tiger swallowtail

Young parsleyworm caterpillar. Adult is the black swallowtail, not the tiger swallowtail.

Large parsleyworm hanging on and chomping away on bronze fennel…very cute!
Zabulon skipper on Salvia

Monarch butterfly feeding on Joe Pye weed

Red-spotted purple butterfly

Question mark butterfly
All sorts of beneficials feeding on bronze fennel!

Great black wasp

Blue mud dauber

Katydid wasp

Weevil wasp
Scoliidi wasps are a grub’s worst nightmare!

Scoliidi wasps, also called digger wasps, are a type of ground nesting wasp. Scoliidi wasps are about 5/8 inch long, blue black, with blackish purple wings. There are two yellow stripes, one on each side of the abdomen. Their bodies are fairly hairy and the back part of the abdomen is covered with reddish hairs. They are generally seen flying over the lawn during the day, leaving in early evening. Scoliidi are beneficial wasps parasitic on grubs. They are not aggressive and generally do not attack people. They disappear at the end of the season and help control the beetle grubs. Adults are often seen visiting golden rod flowers in late summer.
Here are a couple of beneficial flies.

And a couple of orb weaver spiders for good measure!

Yellow Argiope to the left and one of the other orb weavers above
A couple of native stink bugs in the garden for a change!

Cosmopepla sp. Stink Bug

Brown Marmorated stink bugs are on the move and feeding on just about everything. Here are two nymphs on a crabapple leaf.

Green Stink Bug

8/16/2013
Cyclamen mite female above.

Cyclamen mites attack a variety of herbaceous plants. Damage resembles herbicide injury as you can see on the left photo. Isolate any infested plants immediately. Discard badly damaged plants.

Emerald Ash Borer is almost done flying!! Keep an eye out for them around ash trees and report any sightings to us at 1-800-342-2507 or the Maryland Department of Agriculture at 410-841-5920.
Septoria leaf spot on Rudbekia

Septoria leaf spot is caused by the fungus *Septoria rudbeckia*. The fungus overwinters on infected plant residue and spores are produced in late spring. The first symptoms are small angular lesions on the lower leaves. Leaf lesions eventually develop on upper leaves. The spores of the fungus are dispersed by splashing water and can cause secondary lesions throughout the growing season.

Southern blight on Rudbekia

Southern blight is caused by the fungus *Sclerotium rolfsii*. The first symptoms usually appear as yellowing of lower leaves followed by wilt and sometimes plant death. A white, cottony fungal growth can appear at the base of the plant near the soil line. Diagnostic fungal resting structures called sclerotia can appear as small, white to reddish brown balls within the white fungal growth.
Leaf spots on sunflower

The most common leaf spot on sunflower is caused by the fungus *Alternaria helianthi*. Symptoms include irregular leaf spots and stem lesions. Leaf spots are dark brown with grey centers. Yellow halos can form around spots on younger foliage. The pathogen survives on infested plant debris and on alternate hosts such as cocklebur. The fungus is spread by wind and splashing water and spores splash from infested crop debris onto the lower leaves and stems.

Downy mildew on sunflower

Downy mildew of sunflowers is caused by the soil-borne fungal pathogen *Plasmopara halstedii*. Systemic infection results when zoospores infect the sunflower seedlings through the roots. Sunflower plants that survive this initial infection produce white zoosporangia on the underside of the chlorotic areas of leaves. Secondary infections occur when windborne zoosporangia land on sunflower leaves. Secondary infection is most common when sunflower leaves remain wet for prolonged periods of time.
Common Zinnia Leaf Spots

Bacterial leaf spot is caused by *Xanthomonas campestris pv. Zinnia*. This bacterium can survive in dried leaves for as long as a year and can reside on foliage for several months before initiating disease. This disease can be seedborne. The spots begin as dull gray water-soaked areas forming irregular dead areas. Spots turn brown and angular which could then be confused with Alternaria leaf spot. Small brown spots may form on the ray flowers and if severe flower heads can be disfigured and completely decay.

Alternaria leaf spot is caused by *Alternaria zinnia*. The fungus overwinters in plant debris or through contaminated seed. This disease can be seedborne. Small reddish brown spots with grayish white centers increase to irregular, large, brown dry areas. Similar spots occur on stems and may cause girdling. Small brown spots on flowers can enlarge to include the whole petal.

Botrytis Flower Blight

Botrytis on Rudbekia

Botrytis on Phlox
The fungus *Botrytis* usually infects both tender new growth as well as aging or dead floral parts. Flower petals provide an excellent source for spore production. The first symptoms appear as irregular tan, water-soaked spots that eventually develop into soft fuzzy growth. Aging flowers are particularly susceptible. Petals of badly infected flowers often stick together and become matted. As disease progresses blossom and bud blight often lead to stem infections.

Cladosporium leaf spot on Peony

This leaf spot is caused by *Cladosporium paeoniae* and is sometimes called peony measles. The first symptoms appear as small, circular, red or purple spots on the upper surface of young leaves. Later, the spots appear on the underside of leaves. The lower surfaces of infected leaves will turn a dull chestnut brown. Upper leaf surface lesions enlarge rapidly and appear as large irregular purple blotches.

Miscanthus leaf blight

This disease is caused by the fungus *Leptosphaeria* sp. and its imperfect form *Stagonospora* spp. Depending on the cultivar, symptoms can range from small reddish brown spots to complete dieback of the blade tips. When weather conditions are favorable, reddish brown spots will become elongated into oval or spindle shaped lesions that continue to enlarge into larger blotches. The midrib can become blighted and turn a reddish brown color. The disease develops faster on older leaves and often attacks older leaves first.
Diseases on Landscape Roses.

Rose rosette is very colorful on rose

Rose rosette is caused by a virus, and infects multiflora as well as ornamental roses. The initial symptoms are reddening of the stems and stunted growth. Sometimes there is a proliferation or clustering of stems with excessive soft pliable thorns. The flowers may also abort. Infected roses may die within two years. Early detection is critical to prevent further disease spread within a planting. We are currently investigating whether pruning can be used as a management strategy. Remaining roses should be closely monitored for symptoms.

Cercospora leaf spot on rose

This disease is caused by the fungus *Cercospora rosicola*. The size of the leaf spot is variable depending on the species or cultivar of rose. The first symptoms appear as small purplish spots and as the disease progresses the spot will enlarge with the center of the spots turning tan to almost gray. This has become the most prevalent leaf spot on “Knock Out roses” since they are resistant to black spot.
Hydrangea leaf spot

The common leaf spot on hydrangea is caused by *Cercospora hydrangea*. The leaf spot symptoms begin on older leaves first and proceed up the plant. The spots are generally circular with tan centers with dark brown or purple borders. The leaf spots can also appear irregular or angular shaped.

Just for fun!

“Hey guys I heard there was a slug fest up here!”

The wet spring and summer has made for ideal conditions for a slug population boom.
Okay, what is this a picture of?

Send your answer to mkmal@umd.edu and we will have a small prize for you!

And for a little something on vegetables…..
Root-knot nematode injury to Swiss chard By Jon Traunfeld

This photo of Swiss chard roots show the galls caused by root knot nematodes-Meloidogyne species. The location was a community garden in Baltimore. Interestingly, susceptible vegetable plants in adjacent beds were symptomless. This is a group of very common parasitic nematodes that live in the soil and feed inside plant roots. Typical symptoms include stunting, wilting, and loss of vigor. Management information for gardeners is in HG 72 - Root-Knot Nematodes and Vegetable Crops.

Please send all submissions, including photos to Mary Kay Malinoski, mkmal@umd.edu or to David L. Clement, clement@umd.edu. Thanks and please contribute!