Soils and their Sustainable Management

Trish Steinhilber
psteinhi@umd.edu
extension.umd.edu/anmp

February 2015
What is Soil?

• the living skin of the Earth (Ian Pepper, soil microbiologist)
• crucible of terrestrial life (Daniel Hillel, soil physicist)
• the pedosphere
 • the interface between the lithosphere, hydrosphere and atmosphere (ecologists)
• a medium for plant growth
• phenomena of nature (natural bodies)
What are Soils?

- reactive, dynamic, three-phase ecosystems composed of solids, liquids and gases

- Topsoil several days after rainfall or irrigation

- Minerals: 48%
- Air: 25%
- Water: 25%
- Organic Matter: 2%
FIGURE 3-8 The soil triangle is redrawn to show fine-, medium-, and coarse-textured soils. An exception is very fine sandy loam, which is considered medium textured.
<table>
<thead>
<tr>
<th>Property</th>
<th>Fine Texture</th>
<th>Medium Texture</th>
<th>Coarse Texture</th>
</tr>
</thead>
<tbody>
<tr>
<td>Available Water Capacity</td>
<td>Medium</td>
<td>High</td>
<td>Low</td>
</tr>
<tr>
<td>Nutrient Holding Capacity (CEC)</td>
<td>High</td>
<td>Medium</td>
<td>Low</td>
</tr>
<tr>
<td>Infiltration & Percolation</td>
<td>Slow</td>
<td>Medium</td>
<td>Fast</td>
</tr>
<tr>
<td>Crusting</td>
<td>High</td>
<td>Medium</td>
<td>Low</td>
</tr>
<tr>
<td>Compaction</td>
<td>High</td>
<td>Medium</td>
<td>Low</td>
</tr>
</tbody>
</table>
Harsh Reality!

• textural groupings set the stage for many physical properties
 – parent material
 – time

• management can ameliorate extremes to a certain extent
The Other Soil Solid Material: Organic Matter

- Humus: 75%
- Biomass: 10%
- Residues & By-Products: 15%
The Soil Food Web

Source: USDA

First trophic level:
Photosynthesizers

Second trophic level:
Decomposers
Mutualists
Pathogens, parasites
Root-feeders

Third trophic level:
Shredders
Predators
Grazers

Fourth trophic level:
Higher level predators

Fifth and higher trophic levels:
Higher level predators

Plants
Shoots and roots

Organic Matter
Waste, residue and metabolites from plants, animals and microbes.

Nematodes
Root-feeders

Arthropods
Shredders

Fungi
Mycorrhizal fungi
Saprophytic fungi

Nematodes
Fungal- and bacterial-feeders

Protozoa
Amoebae, flagellates, and ciliates

Bacteria

Arthropods
Predators

Nematodes
Predators

Arthropods
Predators

Birds

Animals
Biomass: What It Does

• participates in nutrient cycling
 – comminute (shred or fragment) plant and animal residues, using what they can utilize and leaving behind what they cannot

• mineralization
 – conversion of organic form of an element to an inorganic form
 – protein to amino acid to ammonium
Biomass: What It Does (cont.)

• creation of biopores
 – larger organisms move through soil creating channels or pores
 • channels promote water infiltration and create a healthy balance between large and medium pores
 – disseminate spores and microbes
Resources about Soil Organisms

TED Talk – How Bacteria “Talk”
http://www.ted.com/talks/bonnie_bassler_on_how_bacteria_communicate.html

Soil Biology Primer
Residues and By-products: What They Are

• **dead stuff**
 – crop residues, dead roots and bodies of soil creatures

• **by-products**
 – materials that plant roots and soil creatures release or exude into the soil
Residues and By-products: What They Do

• fuel and nutrients for soil organisms
 – energy and nutrient source for most of the soil creatures

• formation and maintenance of soil aggregates (structure or architecture)
 – sticky and gummy by-products of residue decomposition hold soil particles together in clumps or aggregates
Humus

- relatively stable end product of residue decomposition
- composes the majority of organic matter
- resists further decomposition (1% per year)
- it is not a good nutrient or energy source for soil creatures
Humus: What It Does

• very small in particle size & high surface area

• charged sites at many locations on the surface

• effective at holding water and nutrients
Mantra

Soil is a living factory of macroscopic and microscopic workers who need food to eat and places to do their work. USDA-NRCS
So, what about the pore space...
Different Pores Perform Different Functions

- macropores (large pores)
 - drain quickly after rain or irrigation
 - allow rapid infiltration of rainfall and replenishment of oxygen in the root zone

- mesopores (medium-sized pores)
 - “storage pores”
 - hold water in a form most plants can use

- micropores (very small pores)
 - water is held too tightly to be use to most plants
Soil Aeration – the interplay between water and air
Pore space

- Residues & by-products
 - Micro
 - Meso
 - Macro
 - Biomass

- Organic solids
 - Humus

- Inorganic solids
 - Clay layer minerals
 - Oxides
 - Clay

- Soil
- Solution
- Sand
- Silt
- Air

Organic solids

Inorganic solids

Pore space
Characteristics of a Sustainably Managed Soil

- fertile but not excessive in nutrient status
- holds adequate water for plant growth
- allows rainfall or irrigation to infiltrate yet provides adequate aeration
- has good tilth
- has surface protection
- contains adequate beneficials/minimal pathogens
What is a fertile soil?

• one that provides an adequate supply of all nutrients throughout the entire growing season

• test soil to determine if soil is too acidic and major nutrients are in inadequate supply
 – lime first, then add other nutrients when needed
soil acidity: the adverse condition in the soil solution in humid regions
Soil Tests and Their Interpretation

<table>
<thead>
<tr>
<th>Soil Test Category</th>
<th>Interpretation</th>
</tr>
</thead>
<tbody>
<tr>
<td>very low, low</td>
<td>nutrient will limiting plant growth</td>
</tr>
<tr>
<td>medium</td>
<td>nutrient may not be limiting; addition of nutrient advisable</td>
</tr>
<tr>
<td>sufficient, optimum or high</td>
<td>nutrient supply is OK; no more is needed</td>
</tr>
<tr>
<td>high, very high or excessive</td>
<td>nutrient supply is more than adequate; no more is needed</td>
</tr>
</tbody>
</table>
Soil test results
Protect the Soil Surface – Why?

• minimizes erosion
• protects soil aggregates
• conserves moisture
• moderates soil temperature
Protect the Soil Surface – How?

• protect soil from direct impact of rainfall
 – encourage a complete crop canopy
 – mulch

• plant a cool season cover crop

• minimize bare soil all seasons of the year!
May - Aug | Sept - Nov | Dec - Apr

E | P | E + T

Ground water | Precipitation | Surface runoff
E | T | P
Evaporation | Transpiration | Percolation
Compaction

• bulk density high enough or pore space low enough to negatively impact plant growth

• bulk density >1.6 grams per cubic centimeter or pore space <40% will restrict root growth

• information on either is difficult to obtain
Many subsoils in Maryland’s Piedmont are high in bulk density and low in porosity
Soil Tilth

• a soil property that assesses the suitability of soil to support plant growth

• a physical condition of a soil that relates to its ease of tillage, the impedance of seedling emergence and root penetration
Practically speaking, what does good tilth look like?

• compaction is absent in the entire root zone
• soil does not crust after a rain
• soil is firm when dry and friable (crumbly) when moist
• drains well after rainfall
Tips for Maintaining Good Tilth

• add organic matter
 – food for most soil creatures (heterotrophs)
 – amendments
 – cover crops**
 • warm and cool season choices

• use mulch
 – moderates temperature and moisture content
 – protects soil from crusting and erosion

• minimize extreme tillage
 – rototilling
Are you managing your fields sustainably?

• Are the major macronutrients in the optimal range based on soil test?
• Is it friable and crumbly when moist?
• Is root growth restricted in the subsoil?
• Does water pond after significant rainfall?
• Do rills form during rainfall?
Who Needs a Plan?

Any agricultural operation or farm that

• tills, crops, pastures animals, or produces an agricultural product, and

• has a gross annual income of $2500 or more or 8 animal units (1 animal unit = 1000 lbs. of live weight).
What is a Nutrient Management Plan?

• a written, site-specific plan

• specifies the amount, placement, and timing of all nutrient applications (manure, fertilizer, or other nutrient sources)
What Information Must Be Provided?

• soil tests for each field and pasture
• manure or compost analysis
• type and number of animals
• amount and type of bedding
• days or hours per day on pasture vs. confinement
What Information Will I Be Asked to Provide? (cont.)

• farm map
 – FSA office
 – hand drawn is acceptable

• tax account ID numbers
 – from tax bill or assessment
Duration of Plans

• Most plans are updated annually; however, plans can be written to cover a three-year period under some conditions.

• Soil tests & nutrient source are the limiting factors
 – a soil test is considered current for 3 years
 – organic nutrient sources are tested each year
Where Can I Get a Nutrient Management Plan?

• Certified Nutrient Management Consultants
 – private-sector consultants
 – public-sector consultants (University of Maryland Extension advisors)

• Certified Farmer Operators
 – UME Baltimore series (March & early April)
Questions? Comments?

INTERNATIONAL YEAR OF SOILS 2015

USDA-NRCS SOIL HEALTH INFOGRAPHIC SERIES #001

science of healthy soil

healthy soil is
made of about 45% minerals,
25% water,
5% organic matter, 25% air

Source: The Nature & Properties of Soils page 17
(Nyle Brady, Ray R. Weil)

USDA United States Department of Agriculture

Want more soil secrets?
Check out www.nrcs.usda.gov

USDA is an equal opportunity provider and employer.