Assessing Flood Damaged Corn

It’s late spring and corn has emerged. For much of the state, heavy rains have continued for several days bringing flooding to low lying areas and causing ponding in fields. In this scenario, farmers are now faced with the question of whether their corn will recover, or should they proceed with replanting.

Corn survival after flooding depends on the duration of the flood and the soil temperature. At cooler temperatures, corn may survive up to four days, while at temperatures of 70 degrees Fahrenheit or above expected survival may be as little as 24 hours. Assessing the ability of the corn plant to recover from flooding damage is dependent on the health of its growing point. If the growing point is healthy, the plant should recover with little yield loss at the end of the season attributed to the flooding event.

If the condition of the growing point indicates that the corn will not survive, replanting may be necessary. There are several considerations when deciding to replant: Replanting costs can be substantial; fuel, time, seed costs, etc. The yield potential of the replanted crop is influenced by the planting date; later planting dates (mid-May on) reduce yield potential. Small areas may not be practical to replant. The length of the growing season remaining should also be considered and hybrids of appropriate maturity should be selected. Replanting should be avoided in wet conditions which can lead to sidewall compaction of the seed furrow causing poor seed to soil contact, reduced germination, poor stand, uneven emergence, and restricted root growth. In addition, extra weed control efforts may be necessary in flooded areas.

The growing point is located in the center of the stem and below the soil surface until the V5 stage (5-6 corn leaves with collars). At the V6 stage, corn is approximately 12-18 inches tall. After the V6 stage, stalk elongation begins and elevates the growing point above the soil.
Healthy Growing Point

A “Corn Replanting Decision Tool” has been released as part of the FAST series of Microsoft Excel spreadsheets. Mathematical functions in this tool estimate yields from the original and replanted stands. Estimated yields, along with cost and crop insurance information, then are used to calculate net income from replanting. This tool is part of the Planting Decision Model, which can be accessed from the FAST section of farmdoc.

For more information:
University of Maryland Extension: http://extension.umd.edu/
eXtension http://www/extension.org/

Read more here: http://www.farmdocdaily.illinois.edu/2011/05/corn_replanting_decision_tool.html

Assessing Flood Damaged Corn (2011)

Author by:
J. Richard Nottingham, Extension Agent, University of Maryland Extension
30730 Park Drive, Princess Anne, MD. 21853, 410-651-1350
jnotting@umd.edu

Jennifer Rhodes, Extension Agent, University of Maryland Extension
505 Railroad Ave., Centreville, MD. 21617, 410-758-0166
jrhodes@umd.edu

Reviewed by:
Robert Kratochvil, Extension Specialist, Agronomic Crop Production
University of Maryland Extension

Richard Taylor, Extension Agronomy Specialist
University of Delaware Cooperative Extension

Issued in furtherance of Cooperative Extension work, acts of May 8 and June 30, 1914, in cooperation with the U.S. Department of Agriculture, University of Maryland, College Park, and local governments. Cheng-i Wei, Director of University of Maryland Extension.

The University of Maryland is equal opportunity. The University's policies, programs, and activities are in conformance with pertinent Federal and State laws and regulations on nondiscrimination regarding race, color, religion, age, national origin, gender, sexual orientation, marital or parental status, or disability. Inquiries regarding compliance with Title VI of the Civil Rights Act of 1964, as amended; Title IX of the Educational Amendments; Section 504 of the Rehabilitation Act of 1973; and the Americans With Disabilities Act of 1990; or related legal requirements should be directed to the Director of Human Resources Management, Office of the Dean, College of Agriculture and Natural Resources, Symons Hall, College Park, MD 20742.