Pasture Related Equine Health Issues

Harold C. McKenzie III, DVM, MS, DACVIM
Assistant Professor of Equine Medicine
Marion duPont Scott Equine Medical Center
VA/MD Regional College of Veterinary Medicine
Leesburg, VA

Areas of Concern

- Nutrition
- Poisonous plants
- Colic
- Parasitism

Nutrition

- Horses are meant to be grazing animals
 - Do not require additional feed intake if good quality pasture is constantly available
 - Optimal gastrointestinal function is achieved by slow, steady intake of roughage
 - Horse’s GI tract is designed to ferment and absorb nutrients from roughage

Overfeeding

- Concentrates
 - Additional calorie/protein intake predisposes to obesity, colic and musculoskeletal problems
 - Lush pasture growth in spring and fall may exceed calorie density of grain
 - Yet we continue the feeding of grain
- Lack of Exercise
 - We feed like horses still work for a living
 - But many horses are ‘couch-potatoes’
Feeding

- For proper digestive tract function horses require 1-2% of body weight in long stem dry matter per day

- Pasture is the ideal source of this dry matter
 - When pasture is not available hay is the next most desirable source
 - Hay must be of high quality to fulfill its dietary role
 - Type of hay dependent on region

Pasture or Playpen?

- First decision in pasture management
- Is pasture a source of:
 - Exercise
 - Nutrition
 - If the stocking rate exceeds one horse per acre pasture is primarily useful for exercise
 - Most forage crops will not perform well or attain their full production

Pasture Stocking Densities

- One horse per 0.5 acres of pasture
 - Turnout time < 3 hours per day

- One horse per 1 acre of pasture
 - Turnout time 3-8 hours per day

- One horse per 1.5 acres of pasture
 - Turnout time 8-12 hours per day

- One horse per 2 or more acres of pasture
 - Unlimited turnout time

Seasonal Variation

- Cool season pasture grasses produce little during summer
 - Highly productive pasture might support 3 horses per acre in the spring
 - But only 0.5 horses per acre in summer
 - Exceeding appropriate stocking rate can cause permanent damage to pasture
Timing is Everything

- Keep horses off saturated and rain-soaked soils and dormant or frozen pastures
 - Critical if you want to have a healthy pasture next summer
- Soggy soils and dormant plants cannot survive continuous grazing and trampling in winter
 - Pounding hooves compact the soil and suffocate plant roots

Sacrifice Areas

- Drylot
 - Primary function is exercise
 - Allows for higher animal density on the farm
 - Need to be properly designed
 - Adequate drainage
 - ‘Bluestone’ base is ideal
 - Manure management

Hay Quality

- Green (not brown or bright green)
- No obvious dust or mold
- No weeds
- Lots of leaf with less stem
- No blister beetles
- Kept out of the weather

Types of Hay

- Square baled
- Round baled
- Chopped bagged forage
 - Dengie, etc.
- Haylage
Hay Feeding Styles

- Spread
- Feeder

Concentrates

- Feeding of concentrates in horses that are not in heavy work or under metabolic stress is not necessary
- When concentrates are fed they can alter the flora of the gastrointestinal tract and predispose to GI upset
- Concentrates make a poor substitute for roughage

Poisonous Plants in Hay

- Often easy to find
 - But rarely consumed
 - Pokeweed
 - Horsenettle
 - Jimsonweed
- Can be insidious
 - Switchgrass
 - Liver toxicity

Poisonous Plants in Pasture

- Can be found in any pasture
 - This does not mean horses will eat them!
- Problems I have encountered
 - Fescue Toxicosis (dystocia, agalactia)
 - Maple trees (hemolytic anemia)
 - Cherry trees (cyanide)
 - Yew (taxine alkaloids)
 - Black Locust (robin)
 - White Snakeroot (trematone)

http://plants.usda.gov/index.html
Colic

- Number one cause of death in horses
 - Uncommon in feral horses as it is primarily the product of human management
- The equine GI tract is designed for roughage digestion, not for highly soluble carbohydrate intake
 - Ideal feed intake is slow, steady intake of a roughage based diet

Nutrition and Colic

- Predisposing factors for colic
 - Dietary change
 - Feeding of poor quality roughage
 - Changes in management
 - Introduction to new farm/pasture
 - Alteration of herd makeup in pasture
 - Feeding of large amounts of concentrates
 - Usually correlated with heavy showing/training/competition

Horses HATE Change!

- Make any changes in diet or management gradually where possible
 - Transition hay by gradually increasing percentage of new hay in diet over several days
- Pay close attention to horses at risk due to changes

Dietary Control

- Optimal diet can enable horses to weather mild stresses with less likelihood of dysfunction
 - Lush cool weather growth which has been killed by the first freezing weather has been implicated in some colic cases
- Improper diet is closely followed by parasitism as a predisposing factor in development of colic
Parasite Control

- Poor parasite control increases the incidence of colic
- Heavy stocking densities increase the level of contamination of the pasture
- A good deworming program combined with effective pasture management can greatly improve herd health

Parasite Infestation

- Parasite eggs are shed in the fecal material of infected horses
 - Eggs hatch and larvae are ingested by horses
 - Migration of larvae through tissues leads to damage and dysfunction
 - May predispose horses to colic in response to stresses or challenges which would otherwise not affect them

Why worry?

- For 30 years we have been complacent regarding parasite management
- Unfortunately this has led to a number of problems
 - New types of parasites are becoming a problem
 - Parasites that we have considered as ‘controlled’ are emerging as problems again
 - Some that we never regarded as a serious problem are turning out to be associated with disease

Historical Perspective

- Forty years ago the primary parasite problem was with large strongyles
 - These were known as ‘blood worms’
 - *Strongylus vulgaris* was the worst
 - Invaded the blood vessels supplying the large intestine resulting in clots which interrupted blood flow
 - This resulted in severe colic +/- death
- Readily controlled by ivermectin
Other Parasites

- Did not seem to be a major problem back then...
 - Tapeworms
 - Seen occasionally at post-mortem, but did not seem to be causing much damage
 - Small strongyles
 - Rarely present in large numbers, did not seem to cause problems
 - Ascarids
 - Only present in younger animals

Equine Tapeworms

- Began to see more horses with obstructions of the small intestine at the ileum
 - Large numbers of tapeworms were often present at this site
 - In some cases the wall of the intestine was very thickened, perhaps secondary to the tapeworms
 - Some evidence of a link between tapeworm infestation and colic

Tapeworm Treatment

- Even as the appreciation of the potential importance of tapeworms increased there were few treatments available
 - The primary therapy was pyrantel pamoate (Strongid™)
 - Only effective at twice the normal dosage
 - A newer therapy is the drug praziquantel
 - This treatment is highly effective
 - Single dose of 1 mg/kg
 - Marketed in combination with ivermectin
 - Zimectrin Gold™, Equimax™
 - Quest Plus™ (moxidectin and praziquantel)

Small Strongyles

- Cyathostomes
 - Probably were not a major problem when they were competing with large strongyles
 - But they have a complex life cycle
 - Includes a stage where the larvae are ‘protected’ from deworming drugs
Do small strongyles cause a real problem?

- Not usually in healthy horses that are well nourished and maintained at low stocking densities
- Many horses suffer from sub-clinical disease
 - Poor feed efficiency, decreased performance
- Severe infestations cause clinical disease
 - Cyathostomiasis
 - Weight loss, hypoproteinemia, anemia, poor growth, colic
- Many horses suffer from sub-clinical disease
- Poor feed efficiency, decreased performance
- Severe infestations cause clinical disease
 - Cyathostomiasis
 - Weight loss, hypoproteinemia, anemia, poor growth, colic
- Severe infestations cause clinical disease
 - Cyathostomiasis
 - Weight loss, hypoproteinemia, anemia, poor growth, colic

Small Strongyle Treatment

- The adult parasites are sensitive to all commonly used drugs
 - But the adults are not the problem
 - Treatment of encysted stages requires drugs that can penetrate cyst wall
- Only two effective drugs are available
 - Moxidectin
 - Quest® – 0.4 mg/kg moxidectin
 - Fenbendazole is only effective at higher doses and when given daily for five days
 - Panacur® ‘Powerpack’ – 10 mg/kg once daily for 5 days

Ascarids

- ‘Roundworms’
- An emerging problem in young horses
 - Typically weanling age
 - Horses normally develop natural immunity by 2-3 years of age
 - Clinical signs
 - Infected animals are usually in good condition and are growing well
 - Primary sign is typically acute colic
- Can be an incidental finding
- Gastroscopy or ultrasound
- Can cause subclinical disease
- May cause poor growth, poor hair coat, pot belly
- Can cause severe or even fatal colic
- Especially following deworming
Ascarid Ivermectin Resistance

- Increasingly common
 - Usually resistant to moxidectin as well
- Only a few drugs appear to be effective
 - Oxibendazole (Anthelcide EQ)
 - Panacur PowerPak for the full five days
 - Pyrantel (Strongid) - variable
- Monitor response to treatment with fecal egg counts
 - This will ensure that treatment is effective

Manage to Minimize Parasitism

- Do not overstock pastures
- Rotate pastures
- Pick up manure from paddocks
- Do not allow overgrazing
- Avoid feeding from the ground
- Compost manure for at least one year
- Graze pastures with other species of livestock
 - Cattle and sheep

How do we figure out how to deworm?

- As few as 20-30% of the horses in the herd are responsible for harboring the majority of parasites
 - Therefore responsible for most of the pasture contamination
- Use fecal egg counts to identify them
 - Perform fecal egg counts on all members of herd after a pause in deworming
 - High counts > 500 eggs per gram
 - Medium = 200-500 eggs per gram
 - Low < 200 eggs per gram

Deworming Program Suggestions
First Year of Life

- Do not deworm foals before 60 days
- Treat at 8 week, rather than 4 week, intervals
- Rotate among all effective drugs
 - If ivermectin resistance is not present then continue to use it and/or moxidectin as part of the rotation
 - Also include:
 - Oxibendazole (Anthelcide EQ)
 - Fenbendazole (Panacur PowerPak)
 - Strongid (pyrantel pamoate)

Adult Horses

- All horses
 - Larvacidal therapy in spring and fall
 - Quest (moxidectin)
 - Panacur PowerPak (5 day fenbendazole)
 - Ivermectin (least effective)
 - Combine a tapeworm therapy with these in the fall (+/- spring)
 - Praziquantel
 - Double-dose Strongid

Medium Shedders

- Same as above for all horses
- Add an additional treatment in the early summer to minimize the spread of cyathostomes
 - Pyrantel pamoate (Strongid)
 - Oxibendazole (Anthelcide)
- Ideally fecal egg counts should be monitored to ensure effective treatment
 - Combining these two drugs may increase effectiveness

Heavy Shedders

- Same as for moderate shedders
- Add one more treatment in the late summer period
 - This will minimize the degree to which they contaminate the environment
 - Best to use a different drug than earlier summer treatment
 - Ivermectin (effective against adults)
 - Moxidectin
Monitoring Response

- Remember, a negative fecal egg count does NOT mean the horse is free of intestinal parasites.
 - Larval stages do not produce eggs
- That is why it is important to test as many horses in the herd as possible
- Test before AND after treatment at each deworming for the first 1-2 years
 - Can assess response to treatment and identify ‘high shedders’ over time
 - Cost of testing should be recouped in savings on deworming products (average savings of 75%)