Biomass Thermal & CHP Project Feasibility Evaluation

MD Wood Energy Coalition Biomass Boot Camp

February 23, 2015

Dan Wilson, PE
Wilson Engineering Services, PC & BTEC

Presentation Overview

- Keys to evaluating project feasibility
 - Solving the thermal puzzle
 - Option development & analysis
 - Fuels, technologies, economics
- System sizing and design approach
- Example projects
Biomass benefits / Owner goals

- **Environmental and Social**
 - Renewable energy
 - Replace fossil fuel
 - Energy security
 - Markets for low-use wood (waste, forest residues)
 - Thermal/CHP is most efficient use of limited biomass resource
 - Considered carbon neutral

- **Economic**
 - Energy dollars stay local
 - Energy savings to owner

Piecing together the thermal puzzle, basis for feasibility evaluation

- Annual fuel use and cost
- Heat generation, distribution, and use
- Thermal load modeling
Thermal energy usage and costs drive system economics

Tips:
- Ensure accurate accounting of current or projected annual fuel usage.
- Consider possibilities for future expansion or efficiency projects.
- Use reasonable fuel cost projections – no one really knows what fossil prices will be in the future.

How is the heat used? – Generation, Distribution, and Quality

Steam
- Temperature
- Pressure
- Uses (heating, humidification, etc.)
- Building or process operating schedule
- Allowable variance

Hot Water
- Required temperature
- Uses (pool, DHW, heating, laundry, drying, etc.)
- Building or process operating schedule
- Allowable variance

Forced Air
- Required temperature
- Required air flow
- Uses (heating, drying, etc.)
- Building or process operating schedule
- Allowable variance
Model the loads using all the puzzle pieces available – demand curve

Daily average thermal demand (mmBtu/hr) is typically what can reasonably be modeled with available data.

Useful data:
- Fuel use records/bills
- Recorded heat production
- Portable Btu meter
- Building or process model
- Operating parameters
- Local weather data

Use portable metering equipment to help complete the puzzle

Measured 24-hr High School Heat Demand
With the thermal puzzle solved, now you need some biomass

- Biomass availability
 - What (type & quality), how much, what cost, sustainably available?
 - Opportunity fuels?

- Ask vendors and local/state resource agencies:
 - Fuel, quality, how much, what cost, sustainable?

- Where appropriate, perform a detailed resource assessment
 - Depends on system size and owner comfort with long-term availability

Look to add load (savings) with minor increases in capital cost
Thermally-led CHP can provide electric at <$0.02/kWh (energy cost)

Commercially Available Closed Cycle Biomass Power Generation Options

- Backpressure steam (~5-10% electrical efficiency)
- Organic Rankine Cycle (~15-20%)

Tips:
- Use onsite to maximize value of electric generated
- Year-round load helpful to economics
- Lower quality heat needed onsite = better CHP potential

Cooling - low cost heat / high electric cost

- Air Conditioning w/ Heat COPs (energy output / energy input)
 - Steam Turbine compressor = ~1.8
 - Absorption Chiller
 - Single-Stage (hot water or steam) = ~0.7
 - Two-Stage (steam) = ~1.3
 - Adsorption (hot water or steam) = ~0.7
 - Desiccant cooling (hot water or steam) = varies depending on climate [consumes water]

- Electric water cooled chiller COP = ~7
- Electric air cooled chiller COP = ~4

COP values presented are approximate for illustration purposes. Actual values vary widely depending on actual conditions.
Escalation Rates:
- Oil: 6.3%
- Wood: 2.7%
- General Inflation: 2.7%

Biomass District Heating (hot water), Plymouth, NH

- 16,000 lf underground hw piping
- 25 buildings connected
- 5 and 2 mmBtu/hr biomass boilers
- 4,000 gals thermal storage
- $4.5 M project ($0.3 M grants)
- Replace 95% annual fuel usage (fuel oil and propane)
- 4,800 thermal RECs annually
- $3.5M annual savings/REC revenue
- 1450 mtCO2/yr net carbon offset
Biomass boilers operate between 100 and 25% of rated capacity; ~100% replacement with 23 mmBtu/hr & 13 mmBtu/hr wood boilers.

Biomass Heating (Hot Water), Esopus, NY

- 165,000 sf Facility
- 4.2 mmBtu/hr & 1.8 mm Btu/hr Wood Chip Hot Water Boilers
- Two 2,500 gal Thermal Storage Tanks
- $2.22 Million Project Cost
- Replace 87,000 gal Fuel Oil/year (100%)
- 1,600 tons Wood Chips/year
- $271,300 Annual Energy Savings
Below-grade chip storage, rake reclaim system

1.8 & 4.2 mmBtu/hr hot water boilers

5,000 gallons thermal storage
Biomass boilers operate between 100 and 25% of rated capacity

85% replacement with 23 mmBtu/hr wood boiler

Thermally-led Biomass CHP District Heating (steam) – Lacrosse, WI

- 1,100,000 sf hospital complex
- 28 mmBtu/hr wood chip 450 psig steam boiler
- 350 kW steam turbine/gen set
- Replace 157,000 mmBtu ngas per year (90%)
- 18,000 tons wood chips per year
- $470,000 annual energy savings ($6.5/mcf)
- 1,600 MWh/yr generated (9%)
- 9,500 mtCO2/yr net carbon offset

www.na.fs.fed.us/werc
Thermal storage increases biomass thermal efficiency

Buffer between fluctuating load and biomass unit

Allows operation further into the shoulder months for space heating applications

Biomass Heating (Hot Water), Berlin, NH

- 8,353 sf
- 2 - 0.2 mmBtu/hr Pellet Boilers
- 300 gal. Thermal Storage
- 12 ton Pellet Storage Room
- $90,000 pellet installation, $65,000 upgrade to HVAC system
- Replace 4,800 gal #2/yr (100%)
- 34 tons Wood Pellets/year
- $9,930 Annual Savings ($3.79/gal)
- 25.9 mtCO2/yr net carbon offset
Thermally-led Biomass CHP District Heating & Cooling

- 300 bed medical center
- 20 mmBtu/hr biomass steam boiler, 450 psig
- 350 kW turbine
- 200 ton absorption chiller
- 15,000 tons biomass annually
- Replace 140,000 mmBtu/yr natural gas (90%)
- 1,600,000 kWh/yr renewable electricity
- $900,000 annual operating cost savings ($10/mcf gas, ~now $8)
- 9,250 mtCO2/yr net carbon offset

Image Sources: VA, Wellons, FEI & IDEA 2011 – Woolpert Presentation

Thermally-led Biomass CHP, District Heating (steam)

- 5.0 mmBtu/hr Wood Chip Boiler (150 psig)
- 40 kW Steam Turbine/Gen Set
- $3.0 Million Project Cost
- Replace 120,000 gal Fuel Oil /year (95%)
- Replace 5,000 gal Propane /year
- 1,900 tons Wood Chips/year
- $296,000 Annual Energy Savings ($3.25/gal)
- 137 MWh/yr Generated

www.na.fs.fed.us/werc
Biomass District Heating (steam) – Rockingham, NH

- 300,000 sf of conditioned space
- 7 mmBtu/hr wood chip boiler
- $3.5 Million project cost
- Replace 250,000 gal fuel oil per year (81%)
- 4,000 tons wood chips per year
- $500,000 annual energy savings ($3.0/gal)
- 2,500 mtCO2/yr net carbon offset

- 37,000 gal/yr propane
- $0.6 Million project cost
- 530 tons wood chips per year
- $60,000 annual savings
- 210 mtCO2/yr net carbon offset
Summary

- Establish owner goals & focus scope of study
- Solving the thermal puzzle is the key to biomass thermal studies
- Identify fuel sources that are reliably available, plan for fuel flexibility
- Look for opportunities to make the best project
 - Adding loads, CHP, cooling, etc.