

COMPATIBILITY OF BIOINSECTICIDES AND NATURAL ENEMIES IN THE GREENHOUSE

Eric Clifton, PhD Research & Development Lead

S

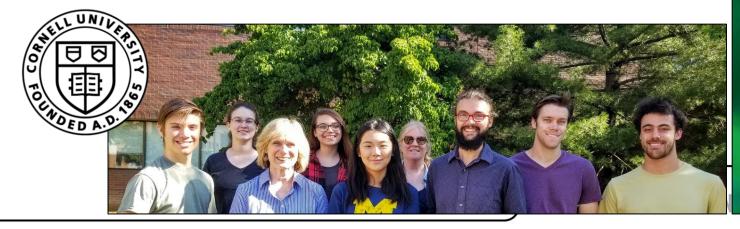
ΥОΝ

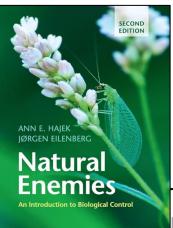
AND BE

ш

νo

AB




WHO IS THIS GUY?

- Graduate school in Entomology at Iowa State University (entomopathogenic fungi, corn rootworms, aphids, nematodes)
- Postdoc at Cornell University with Dr. Ann Hajek (biocontrol of Asian longhorned beetle and spotted lanternfly)
- Joined BioWorks R&D in 2022

(insects, mites, diseases in greenhouse and specialty agriculture)

A MEMBER OF BIOBEST GROUP

WHO IS THIS GUY?

Field experience studying the efficacy of mycoinsecticides and the impacts on non-target insects

BioWorks Product Compatibility

BioWorks Product	Second Product Brand name 🔺	Compatibility (* See Comments) 🔺
EpiShield™		
EpiShield™	Holt-X [®]	Yes*
EpiShield™	MilStop [®]	Yes
EpiShield™	Interpretation SuffOil-X [®]	Yes*
EpiShield™	BotryStop® WP	Yes*
EpiShield™	* ON-Gard®	Yes*
EpiShield™	* CEASE®	Yes
EpiShield™	Agri-Mek [®] SC	Yes
EpiShield™	🕆 Nealta® Miticide	Yes
EpiShield™	* Shuttle® O	Yes
EpiShield™	* Kontos®	Yes
EpiShield™	* Pylon®	Yes
EpiShield™	🖶 Akari® 5SC	Yes

We found **9 non-target insects** killed by BoteGHA (*B. bassiana* strain GHA verified by genomic data)

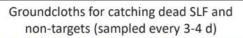
<u>Hemiptera</u> 1 Acanalonia conica (Acanaloniidae) 3 Flatormenis proxima (Flatidae)

> <u>Lepidoptera</u> 2 larvae (species unknown) 1 *Atteva aurea* (Attevidae)

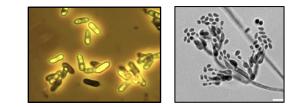
<u>Coleoptera</u> 1 *Lagriinae* sp. <u>Hymenoptera</u> 1 Vespid sp.

Environmental Entomology, 49(4), 2020, 854–864 doi: 10.1093/ee/nvaa064 Advance Access Publication Date: 3 June 2020 Research

Pest Management

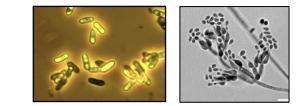

Applications of *Beauveria bassiana* (Hypocreales: Cordycipitaceae) to Control Populations of Spotted Lanternfly (Hemiptera: Fulgoridae), in Semi-Natural Landscapes and on Grapevines

Eric H. Clifton,^{1,6,0} Ann E. Hajek,¹ Nina E. Jenkins,² Richard T. Roush,³ John P. Rost,⁴ and David J. Biddinger^{2,5}



TALK OUTLINE

- Recap on biocontrol, mycoinsecticides and biocontrol agents
- What is compatibility and how do we test this?
- Biopesticides and biocontrol agents that get along
- Examples where they don't get along so well...
- Summary and additional resources

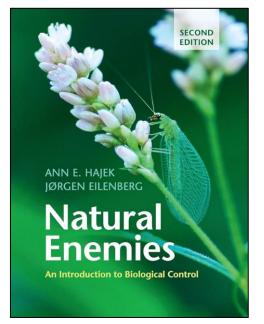


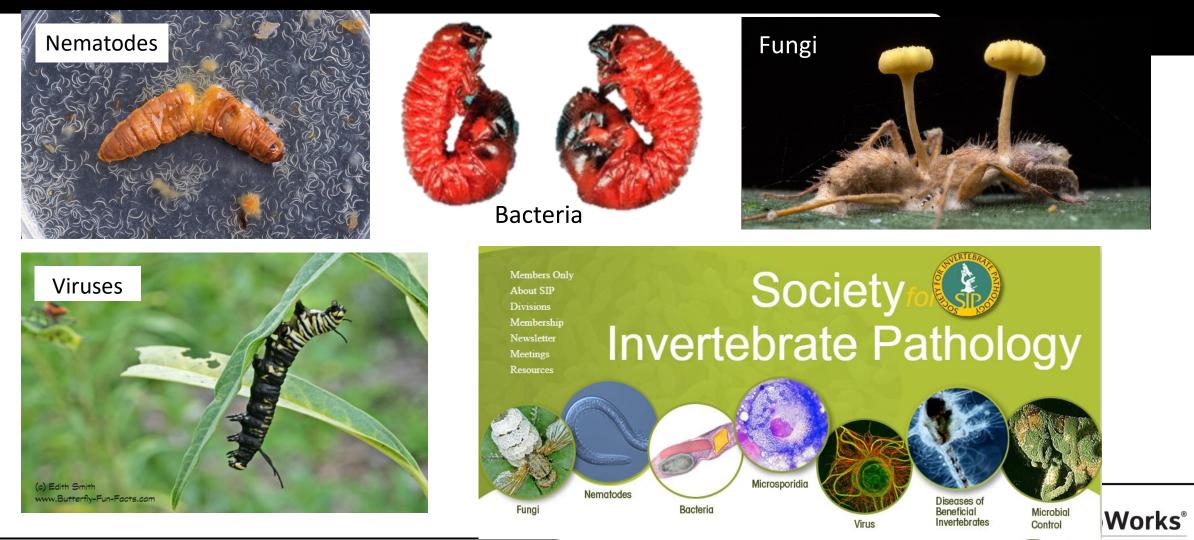
TALK OUTLINE

- Recap on biocontrol, mycoinsecticides and biocontrol agents
- What is compatibility and how do we test this?
- Biopesticides and biocontrol agents that get along
- Examples where they don't get along so well...
- Summary and additional resources

WHAT IS BIOLOGICAL CONTROL

The use of natural enemies (predators, parasitoids and pathogens) to control pest populations


"Good bugs and microbes attacking bad bugs"



THE FASCINATING DIVERSITY OF INSECT PATHOGENS

A MEMBER OF BIOBEST GROUP

REFRESHER ON TERMS

- **Biopesticides** regulated by EPA
 - Biochemical products derived from natural materials, e.g. potassium bicarbonate
 - Microbial products use microorganisms as active ingredients with direct or indirect activity
 - Mycoinsecticides use fungi to target pests or diseases
- Biocontrol agents (BCA's)
 - Predatory insects or mites, e.g. ladybugs and swirskii mites
 - Entomopathogenic nematodes, e.g. Steinernema spp.
 - Parasitic wasps, e.g. Aphidius and Encarsia spp.

BIOPESTICIDES WITH FUNGI (MYCOINSECTICIDES)

BioCeres

Beauveria products

Botanigard (Certis USA) *Beauveria bassiana* Strain GHA

(Anatis Protection)

Beauveria bassiana

Strain ANT-03



Velifer (BASF) *Beauveria bassiana* Strain PPRI 5339

Metarhizium products

LALGUARD M52 (Lallemand Plant Care) *Metarhizium brunneum* Strain F52

Isaria/Cordyceps products

NOFLY (Blacksmith Bioscience) *Isaria fumosorosea* Strain FE 9901

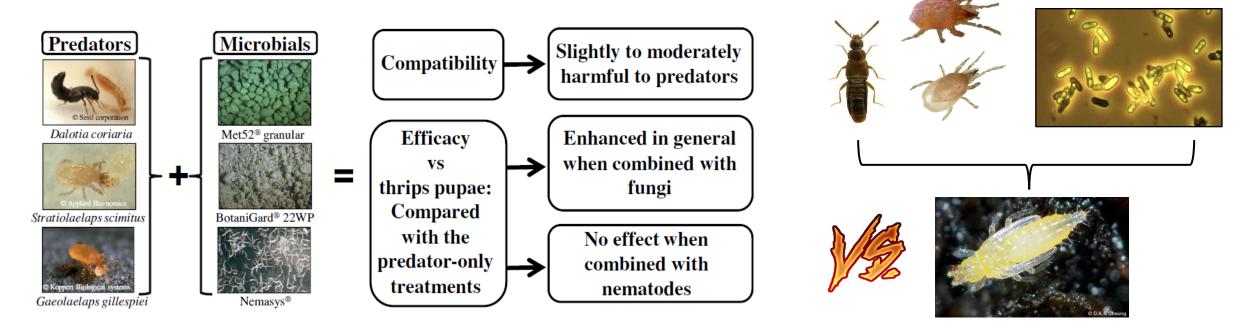
PFR-97 (Certis USA) *Isaria fumosorosea* Apopka Strain 97

BIOCONTROL AGENTS AND SUPPLIERS

Cultivating **Bio**alliances

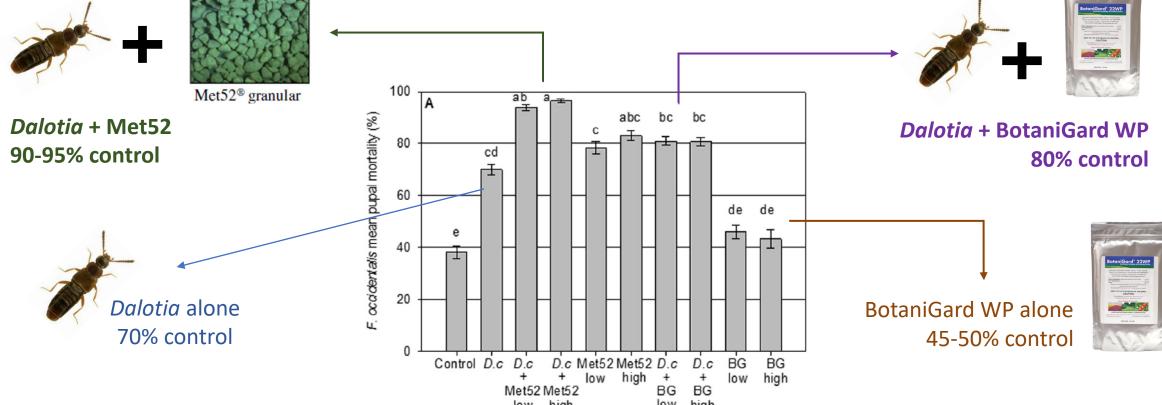
Left Figure: John Sanderson, Suzanne Wainwright-Evans & Ronald Valentin

ABOVE AND BEYOND IS WHERE WE BEGIN


0

Bioline

01


IT'S A TEAM EFFORT

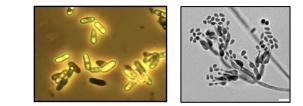
- Plant health, scouting and cultural control methods increase the likelihood of success for biocontrol programs (e.g., sticky cards, weed control, inspecting new plant material)
- Successful biocontrol programs typically use multiple BCAs and biopesticides (e.g., >2 parasitoids and biopesticides for aphids; kitchen sink for thrips)

Reference: Saito, T., & Brownbridge, M. (2016). Compatibility of soil-dwelling predators and microbial agents and their efficacy in controlling soildwelling stages of western flower thrips Frankliniella occidentalis. *Biological Control*, 92, 92-100.

Combination of Dalotia coriaria and mycoinsecticides worked better on western flower thrips pupae than each biocontrol used alone

high low high low

Reference: Saito, T., & Brownbridge, M. (2016). Compatibility of soil-dwelling predators and microbial agents and their efficacy in controlling soildwelling stages of western flower thrips Frankliniella occidentalis. *Biological Control*, 92, 92-100.


IT'S A TEAM EFFORT

TALK OUTLINE

- Recap on biocontrol, mycoinsecticides and biocontrol agents
- What is compatibility and how do we test this?
- Biopesticides and biocontrol agents that get along
- Examples where they don't get along so well...
- Summary and additional resources

CAN BCA'S AND BIOPESTICIDES PLAY NICE?

- General assumption is that biopesticides and OMRI-approved products are safer than conventional pesticides – tread carefully! Some biochemical products have broad spectrum activity, e.g., products with modes of action like suffocation and desiccation.
- Not all microbial products are EPA registered, and thus they cannot make label claims about efficacy.

Dr. Brownbridge will talk more about this in the afternoon session.

Beauveria bassiana mushroom fungus agar cu...

5lbs Fully Colonized Mycelium Grain Spawn Bl.

Examples of items sold on Etsy when you search for "Beauveria"

- 1. Pesticides that do not mix well or have reduced physical and chemical stability when mixed.
- 2. Pesticides that reduce the survival, foraging efficiency, and reproduction of biological control agents.

JC Chong, April 2023 eorganic.org

1. Pesticides that do not mix well or have reduced physical and chemical stability when mixed.

2. Pesticides that reduce the survival, foraging efficiency, and reproduction of biological control agents.

"Jar Test" Check for active ingredients that separate into distinct layers in the spray tank or produce excess foaming, curdling, heat, and changes to pH

JC Chong, April 2023 eorganic.org

1. Pesticides that do not mix well or have reduced physical and chemical stability when mixed.

2. Pesticides that reduce the survival, foraging efficiency, and reproduction of biological control agents.

Lethal effect

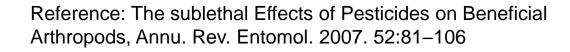
Sublethal effects

JC Chong, April 2023 eorganic.org

Insects and mites may be exposed to pesticides via:

- Direct exposure
 - Sprayed directly with pesticides
 - Contact with fresh residues (solution has just dried)
- Residual exposure
 - Contact days after pesticide application
 - Walk on or in contact with pesticide residues
 - Ingest plant tissues with aged residue

JC Chong, April 2023 eorganic.org

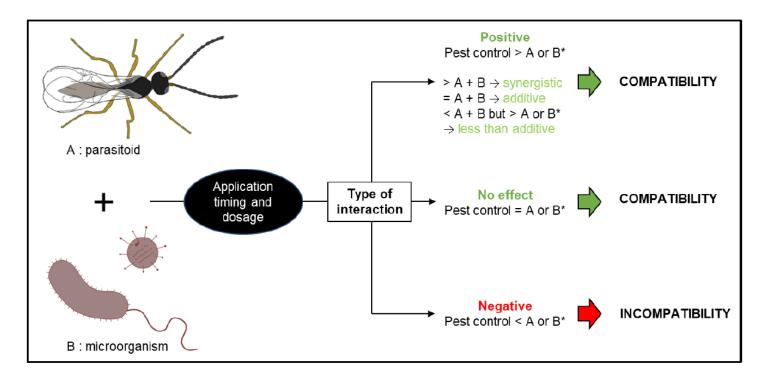

NATURAL ENEMY COMPATIBILITY (SUB-LETHAL EFFECTS)

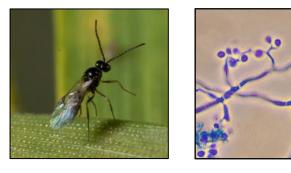
Many studies have documented sublethal effects; however, only mortality tests are considered

- Physiological effects
 - Development
 - Adult longevity
 - Immunology
 - Fecundity
 - Sex ratio

- Behavioral effects
 - Mobility
 - Navigation/orientation
 - Feeding behavior
 - Oviposition behavior
 - Learning performance

Always read the labels and be mindful of pesticide overuse. "Too much of a good thing" can be bad for BCAs.



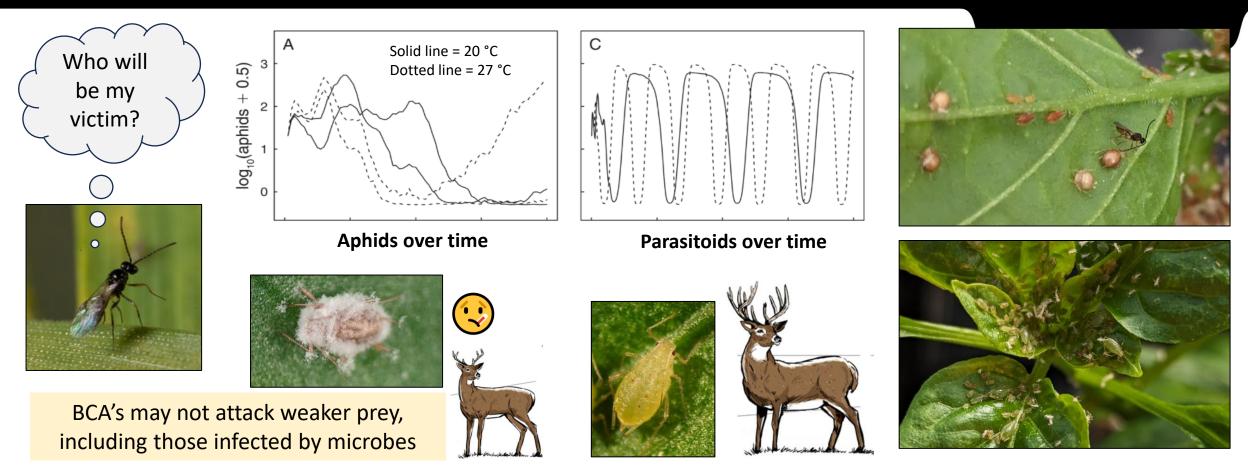


Oil residue on foliage

NATURAL ENEMY COMPATIBILITY

Figure 1. Types of interactions and factors influencing the compatibility of entomopathogenic microorganisms and parasitoids. * Comparison made with the more effective of agents **A** or **B**.

ABOVE AND BEYOND IS WHERE WE BEGIN



Koller et al. (2023). Entomopathogens and Parasitoids Allied in Biocontrol: A Systematic Review. Pathogens, 12(957). https://doi.org/10.3390/pathogens12070957

NATURAL ENEMY COMPATIBILITY

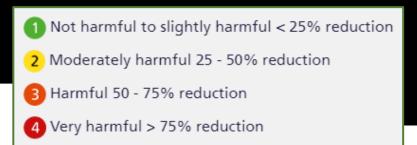
BCA's and mycoinsecticides could be compatible, but you may not always want to use them at the same time!

Reference: Meisner et al. (2014). Temperature effects on long-term population dynamics in a parasitoid-host system. Ecological Monographs, 84(3).

BIOPESTICIDE AND BCA COMPATIBILITY

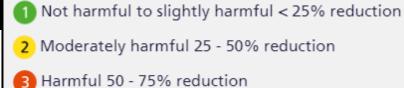
Can I use this biopesticide with my program and BCAs?


BIOPESTICIDE AND BCA COMPATIBILITY

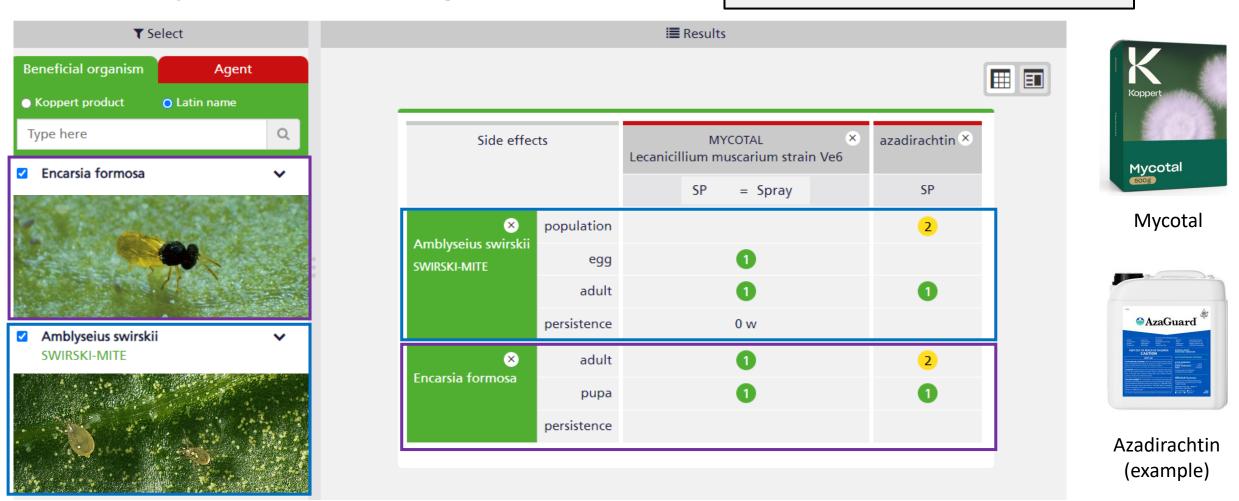

Can I use this biopesticide with my program and BCAs?

"It depends…" 印

- sideeffects.koppert.com
- biobestgroup.com/side-effects-app
- betterplants.basf.us



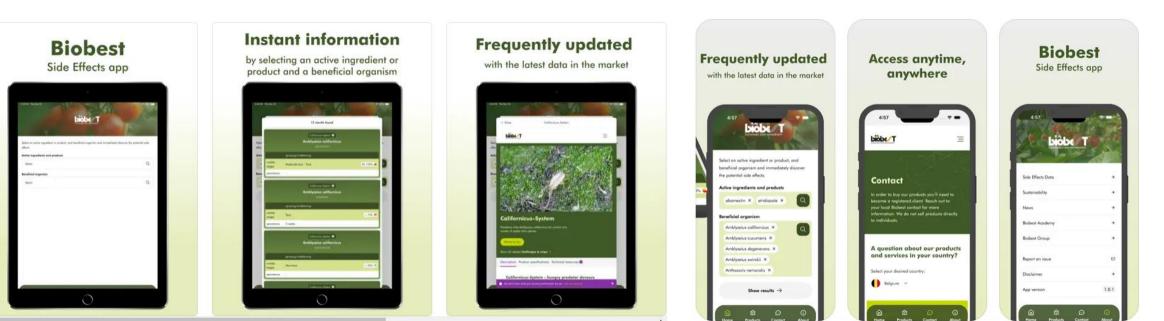
Koppert


Home

sideeffects.koppert.com

Company Distribution News & Press Working at Koppert Contact Newsletter

4 Very harmful > 75% reduction



biobestgroup.com/side-effects-app

Next Side Effects Active ingredient **Commercial product Clear Selection** Filter 2.4.D abamectin acephate acequinocyl acetamiprid acrinathrin Adoxophyes orana Granulose Virus alachlor aldicarb alphacypermethrin

	Ai	nblysei	ius dege	nerans		
	acepl	hate	aceta	miprid	aceq	uinoxyl
	s	1	s	1	S	Ť.
nymph/adult	4				4	
persitence	5w	54	5w		5w	5
	Aı	nblysei	ius dege	nerans		
	acep	hate	aceta	miprid	aceq	luinoxyl
	S	1	S	1	S	1
nymph/adult				4	4	

Mobile app for phones and tablets

Downloads and Resources

- Nemasys® Usage & Handling
- Beneficial Nematode
 Treatment Guide
- Nemasys Chemical
 Compatibility Guide
- Nemasys Fungus Gnat Interiorscapes Technical Information Bulletin
- Nemasys Fungus Gnat Technical Information Bulletin
- Nemasys Injector Chart
- Nemasys Technical Information Bulletin
- Nemasys Western Flower
 Thrips Technical Information
 Bulletin
- Beneficial Nematodes Best Practices

🗆 • BASF

Nemasys[®] Beneficial Nematodes Chemical Compatibility Guide

Western Flower Thrips

Control of western flower thrips (WFT) is best accomplished with a program approach. The initial drench application of Nemasys[®] should be applied to the soil or growing media for control of soil-dwelling WFT early in the growth cycle, whereas subsequent applications of Nemasys should be made as foliar sprays to target foliar-dwelling WFT.

		Area	Application Volume		Area	Application Volume
Initial Soil Dre	nch	1000 ft2	50 gal.	Foliar	1000 ft ²	2.5 gal.
	Ap	plication			Light Infestatio	n
Treated Area	Nu	nber of Trays	Water Volume	Treated Area	Number of Tray	/s Water Volume
1,100 ft2	1	x 50 million	0.50 gal.	4,400 ft ²	1 x 50 million	0.10 gal.
2,200 ft²	2	x 50 millions	1.00 gal.	8,800 ft2	2 x 50 millions	0.20 gal.
3,300 ft2	3	x 50 millions	1.50 gal.	13,200 ft2	3 x 50 millions	0.30 gal.
4,400 ft²	4	x 50 millions	2.00 gal.	17,600 ft2	4 x 50 millions	0.40 gal.
5,500 ft²	1:	x 250 million	2.50 gal.	22,000 ft ²	1 x 250 million	0.50 gal.
11,000 ft2	2 ×	250 millions	5.50 gal.	44,000 ft ²	2 x 250 millions	1.00 gal.
16,500 ft²	З х	250 millions	8.30 gal.	66,000 ft ²	3 x 250 millions	1.70 gal.
22,000 ft ²	4 ×	250 millions	11.00 gal.	88,000 ft ²	4 x 250 millions	2.20 gal.

Insecticide-Miticide		
Abamectin	Avid + Various	Apply separately, 7-day interval
Acephate	Orthene TT&O	Suitable for tank mixing
Acetamiprid	TriStar 8.5 SL	Apply separately, 14-day interval
Afidopyropen	Ventigra® insecticide	Suitable for tank mixing
Aldicarb	Temik 10G	Apply separately, 14-day interval
Alpha-cypermethrin	Fendona® CS controlled release insecticide	Suitable for tank mixing
Aluminum tris	Aliette WDG	Apply separately, 7-day interval
Azadarachtin	Molt-x	Suitable for tank mixing
Azinphosmethyl	Guthion	Apply separately, 14-day interval
Bacillus thuringiensis	Dipel DF	Suitable for tank mixing
Beauveria + Pyrethrins	Botanigard Maxx	Suitable for tank mixing
Beauveria bassiana	Botanigard ES	Suitable for tank mixing
Beauveria bassiana	Velifer® fungal contact insecticide/miticide	Suitable for tank mixing
Beauveria bassiana	Naturalis	Suitable for tank mixing

Nemasys® Beneficial Nematodes: Best Management Practices

Pesticide Use with Natural Enemies

Should never be used (4):

- Toxic
- Persist 2-3 months

Clean up & spot sprays (3):

- Moderately toxic
- Persist 2-3 weeks

Functional IPM tools (2):

- Slightly toxic but has a place
- Short to no residual

Somewhat compatible (1):

- Non-toxic, minimal sub-lethal effects
- Short to no residual

Toxicity Rating Chart*

IPM Impact Rating ¹	Mortality /Reduction	Toxicity
1	<25%	Non-Toxic
2	25-50%	Slightly Toxic
3	50-75%	Moderately Toxic
4	>75%	Toxic

1. Side-effects Database, IPM Impact, 2019

http://www.omafra.gov.on.ca/english/crops/hort/news/grower/2005/02gn05a1.htm

Should Never be Used (4)

- Toxic
- Persist 2-3 months
 - Marathon, Orthene, Dursban,
 Permethrin (IRAC 4A, 1B, 3A)

0						
		acephate	chlorpyrifos	imidacl	oprid	permethrin
SUSTAINABLE CROP MANAGEMENT		S	s	S	i	s
Amblycojus swirskij	Nymph/adult	? (j	? (j	3	1	? (j)
Amblyseius swirskii	Persistance	? (i)	? (j	? (1)	-	? (i)
	Larva	0	4	4	1	4
Aphidius spp.	Adult	4	4	4	1	
	Persistance	? (i)	? (i)	? (1)	-	>8 w
	Larva	2	4	4	1	4
Aphidoletes aphidimyza	Adult	4	4	4	1	4
	Persistance	>8 w	? (i)	? (1)	-	>8 w
	Larva	4	4	3	1	4
Encarsia formosa	Adult	(4)		4	1	4
	Persistance	>8 w	? (i)	? (i	-	>8 w

			DURSBAN × chlorpyrifos		WOPRO IMIDACLOPRID 70WG × MARATHON imidacloprid	
			SP	SPK	SP	DR
8	population	4	4		3	0
Amblyseius swirskii	adult					0
	persistence	6 - 8 w			3 w	0 w
8	adult	4	4		4	1
Aphidius colemani	larva					
	mummy		4		4	0
	persistence					0 w
× Aphidoletes aphidimyza	adult	4	4		4	0
Aphidoletes aphidimyza	larva	2			4	0
	persistence	8 - 12 w				0 w
Encarsia formosa	population				4	4
Encarsia formosa	adult	4	4	3		
	larva					
	pupa	4	3			
	persistence	8 - 12 w	8 - 12 w		> 12 w	> 12 w

Clean Up & Spot Sprays (3)

- Moderately toxic
- Persist 2-3 weeks
 - Avid, Pylon (IRAC 6, 13)

Abamectin	Vertimec 18EC	18th	L	Phytoseiulus persimilis	Predatory mite	Extended lab	13.5g	4th
Abamectin	Vertimec	18g	L	Orius insidiosus	Plant dwelling predator	Initial toxicity	18g	4th
Abamectin	Vertimec	18th	L	Araneae	Plant dwelling predator	Field	9g	1
Abamectin	Abamectin DVA 18EC	18th	I.	Amblyseius Iargoensis	Predatory mite	Initial toxicity	1.08g	3rd
Chlorfenapyr	Pirate	240	I.	Orius insidiosus	Plant dwelling predator	Initial toxicity	200 g	2
Chlorfenapyr	Chlfenamyr F	100	I.	Aphidius gifuensis	Parasitic hymenoptera	Initial toxicity	20g	4th
Chlorfenapyr	Intrepid		I.	Amblyseius californicus	Predatory mite	Field aged	96g	1

		AVID × abamectin	PYLON × chlorfenapyr
		SP	SP
8	population		3
Amblyseius swirskii	adult	4	
	persistence	< 2 w	
8	adult	4	4
Aphidius colemani	larva		0
	mummy		0
	persistence	1 w	> 4 w
8	adult	4	3
Aphidoletes aphidimyza	larva	4	4
	persistence	1 w	4 w
8	adult	4	4
Encarsia formosa	larva		0
	pupa	0	
	persistence	3 w	3 w
8	adult	3	3
Eretmocerus eremicus	larva	0	3
	persistence	1 w	
8	adult	3	2
Orius insidiosus	nymph	3	0
	persistence	1 w	

Functional IPM Tools (2):

- Slightly toxic but has a place
- Short to no residual
 - Oil, soap, botanicals, Ventigra,
 MainSpring, Kontos, Endeavor
 (IRAC UN, UNE, 9B, 9D, 28, 23)

Compatibility with Beneficial Arthropods

Insect	Lifestage	Mortality	Exposure Type
Amblyseius swirskii	Adult motiles	23% (%reduction compared to UTC)	Direct Spray- insect and plant
Euseius tularensis	Mixed population	0% (%reduction compared to UTC)	Field Spray
Neoseiulus californicus	Adult motiles	5%	Indirect- dry residue
Orius insidiosus	Adults	15%	Indirect- dry residue
Coccinella septempunctata	larvae	10%	Indirect- dry residue
Chrysoperla carnea	larvae	3%	Indirect- dry residue
Phytoseiulus persimilis	Adult motiles	10%	Indirect- dry residue

Ventia

Ventigra's AI = Afidopyropen

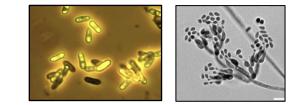
JMS Stylet Oil is compatible with *Orius* and some parasitoids, but predatory mites are more sensitive and would have more exposure to the oils & residues.

•			ENDEAVOR × pymetrozine		JMS STYLET OIL × SPRAYING OIL mineral oil	M-PEDE × potassium salts of fatty acids
•			SP	DR	SP	SP
	8	population		0	4	
	Amblyseius swirskii	adult	0		3	8
		egg	0			
		persistence	0 w	0 w		0 w
	😞 Aphidius colemani	adult	2	2	0	4
	Aphiolus colemani	mummy	1	0	0	
gra		persistence	1 w		0 w	
	× Aphidoletes aphidimyza	adult	2	0	0	4
	Aphidoletes aphidimyza	larva	3	2	0	
		persistence			0 w	0 w
	× Encarsia formosa	adult	0	0	0	4
	Encarsia formosa	larva		0		
		pupa	0		0	2
		persistence			0 w	0 w
	Orius insidiosus	adult	0		0	
		nymph	0			
		persistence	0 w		0 w	
	× Phytoseiulus persimilis	adult	0	0	3	0
	r nytoseidids persininis	nymph	0		3	0
		egg	0			2
		persistence				0 w

Somewhat compatible (1):

- Non-toxic, minimal sub-lethal effects
- Short to no residual
 - Microbials, botanicals (IRAC UN, UNB, UNE, UNF, UNM)

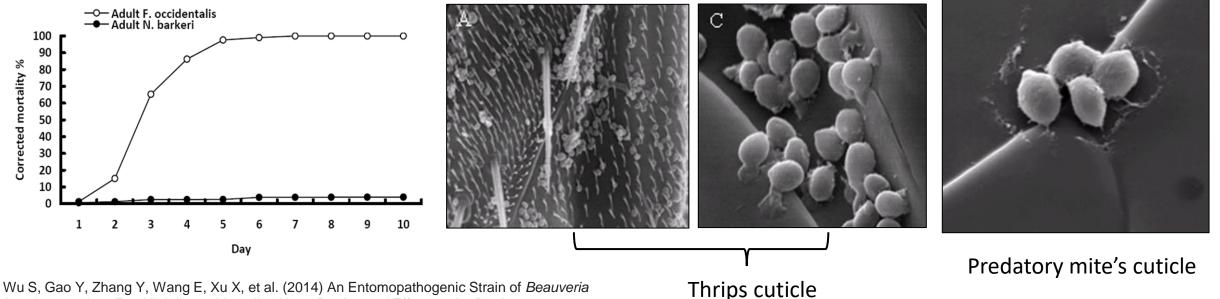
Still use caution! Pyrethrins can be lethal to some BCA's with direct exposure


OILB-SROP									
Beauveria bassiana GHA	Botanigard 22WP		L	Orius Iaevigatus	Plant dwelling predator	Extended lab	7x500g (7D)	2	
Beauveria bassiana GHA	Botanigard ES9601		L	Orius Iaevigatus	Plant dwelling predator	Extended lab	7x1000ml (7D)	1	
Beauveria bassiana GHA	Botanigard ES		L	Nesidiocoris tenuis	Plant dwelling predator	Semi- field	250 g	1	
Beauveria bassiana GHA	Botanigard ES		I.	Orius insidiosus	Plant dwelling predator	Semi- field	250 g	1	

	от	adoxophyes orana granulovirus $ imes$	azadirachtin $ imes$	$_{\rm pyrethrins}\times$
BIOLOGICAL SY		SP	SP	SP
8	population	0	2	
Amblyseius swirskii	adult		0	
	persistence			
× Aphidius colemani	population			
	adult	0	0	₫
	larva	0	0	
	mummy			1
	persistence		0 w	1 w
× Aphidoletes aphidimyza	adult	0	0	4
· · · · · · · · · · · · · · · · · · ·	larva	0	0	4
	persistence			> 1 w
× Encarsia formosa	adult	0	2	4
	larva	0		
	pupa		0	
	persistence			0 w
8 Eretmocerus eremicus	population			
	adult	0	0	
	larva	0	0	2
	pupa			
	persistence			1 w
Orius insidiosus	adult	0	0	
	nymph	0	2	
	persistence		0 w	

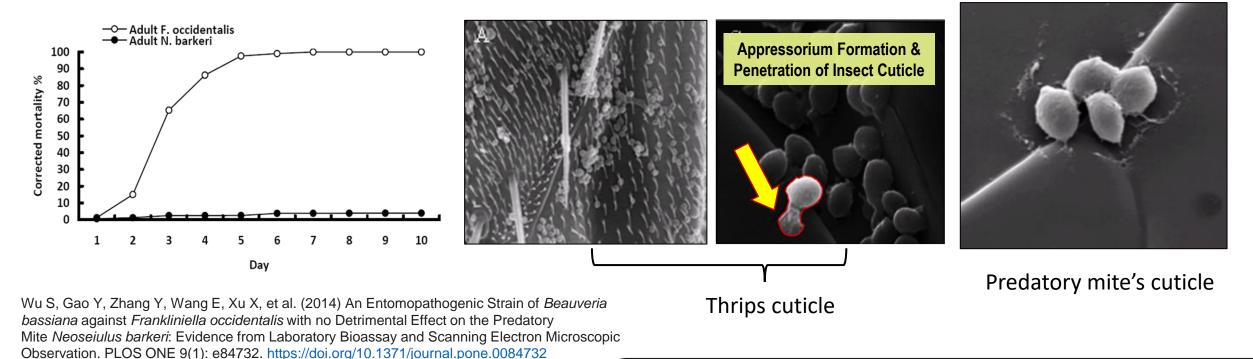
TALK OUTLINE

- Recap on biocontrol, mycoinsecticides and biocontrol agents
- What is compatibility and how do we test this?
- Biopesticides and biocontrol agents that get along
- Examples where they don't get along so well...
- Summary and additional resources



BEAUVERIA ON THRIPS AND PREDATORY MITES

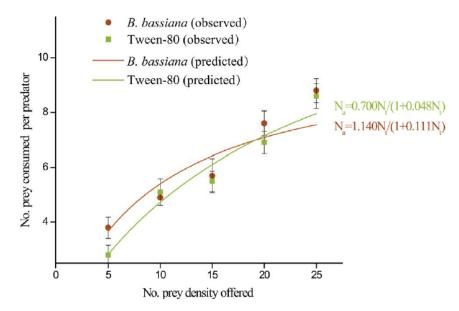
"...we never observed penetration of the predator's cuticle and conidia were shed gradually from the body, further demonstrating that B. bassiana strain SZ-26 show high toxicity against F. occidentalis but no pathogenicity to the predatory mite *Neoseiulus barkeri*."



bassiana against Frankliniella occidentalis with no Detrimental Effect on the Predatory Mite Neoseiulus barkeri: Evidence from Laboratory Bioassay and Scanning Electron Microscopic Observation. PLOS ONE 9(1): e84732. https://doi.org/10.1371/journal.pone.0084732

BEAUVERIA ON THRIPS AND PREDATORY MITES

"...we never observed penetration of the predator's cuticle and conidia were shed gradually from the body, further demonstrating that B. bassiana strain SZ-26 show high toxicity against F. occidentalis but **no pathogenicity to the predatory mite** *Neoseiulus barkeri.*"



BEAUVERIA ON THRIPS AND PREDATORY MITES

Phytoseiulus persimilis mites exposed to Beauveria bassiana spent more time grooming(cleaning themselves), but there was no negative impacts on predation rate.The combination of B. bassiana and P. persimilis mites showed synergisticWu, S., Xing, Zeffects in controlling twospotted spider mites.

Fig. 5. Attachment of fungal conidia on the body of *P. persimilis* after mounting the leaf disk following treatment with *B. bassiana*. Red arrows signify the position of conidia adhesion. (A) Conidia attached to the mite's legs, gnathosoma, plastron and ventral surfaces; (B) Conidia aggregation on the mite's leg. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Wu, S., Xing, Z., Sun, W., Xu, X., Meng, R., & Lei, Z. (2018). Effects of Beauveria bassiana on predation and behavior of the predatory mite Phytoseiulus persimilis. Journal of Invertebrate Pathology, 153, 51-56.

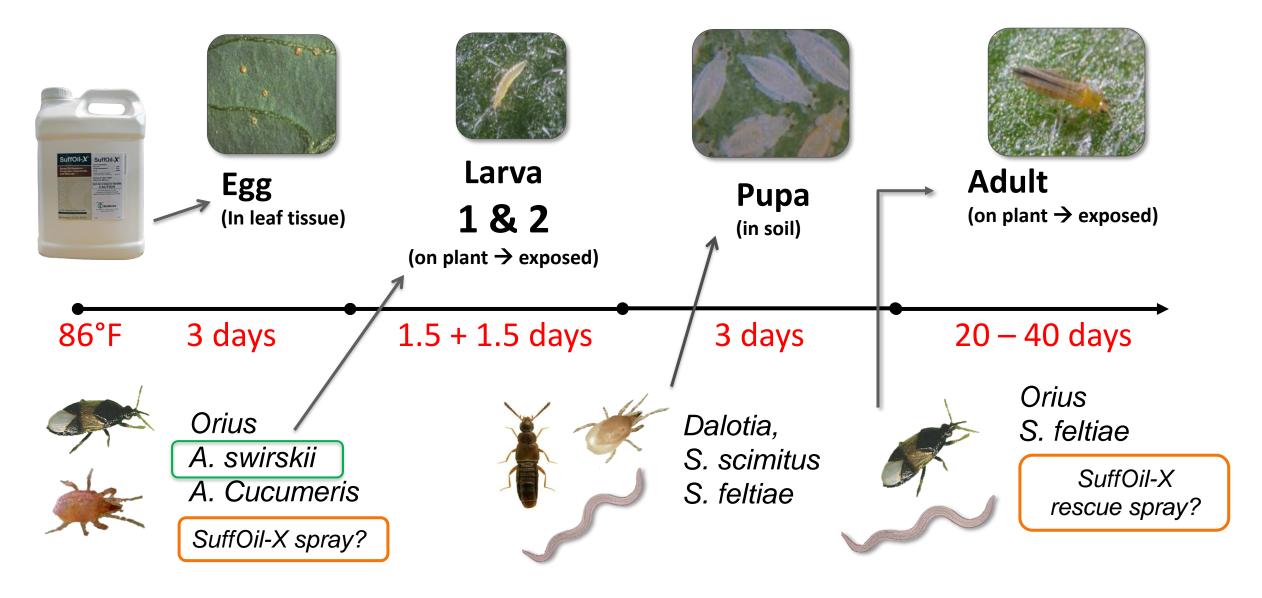
Fig. 2. Functional response of adult female *P. persimilis* to *T. urticae* adults previously sprayed with *B. bassiana* and Tween-80. Each point and bar represent mean and SE.

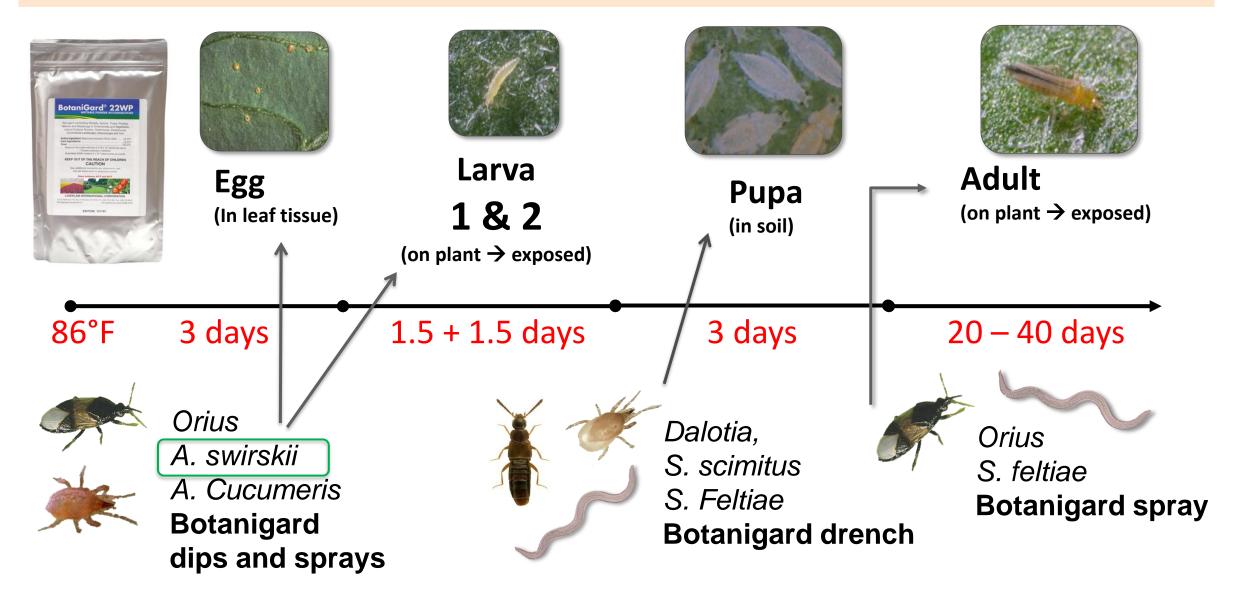
SLIGHTLY RELATED - BEE VECTORING

- Commercial bumble bees can be used to both pollinate and vector biopesticides. The company Bee Vectoring Technology (BVT) was initiated from research dating back to 2006.
- Studies including BotaniGard WP have shown compatibility in this system

Innovative Bee Delivery Tech Helps Strawberries Fight Botrytis

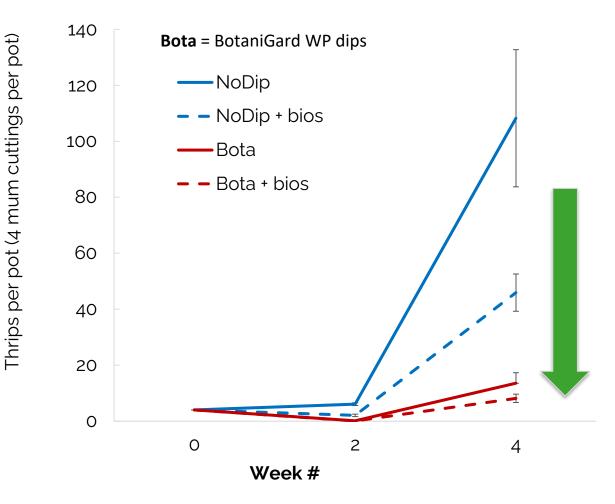
ABOVE AND BEYOND IS WHERE WE BEGIN




beevt.com

Scenario #1: Managing western flower thrips with BCAs, nematodes, and curative sprays of SuffOil-X on greenhouse tomatoes.

Scenario #2: Managing western flower thrips with BCAs, nematodes, and BotaniGard WP on greenhouse ornamentals. The grower has blooms that are very sensitive to oils.



Successful Biocontrol Programs

- Preventative vs reactive
- Propagation:
 - Cuttings
 - Insects/mites/disease
 - Pest resistance
 - Pesticide residues
 - Dipping

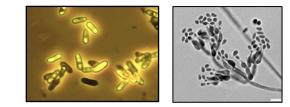
Vineland Research & Innovation Center

BEAUVERIA WITH APHID PARASITOIDS

In general, aphid parasitoids are compatible with *Beauveria* treatments, but aphid control was better when parasitoids were released at least 48 hr before spraying aphids with the fungus

"The presence of the fungus caused a longer duration between parasitoid mummy formation and female emergence, with the longest duration when the aphids were exposed to the parasitoids 24 h after fungal infection"

Aphidius matricariae



Rashk et al. (2009). Interactions among the entomopathogenic fungus, Beauveria bassiana (Ascomycota: Hypocreales), the parasitoid, Aphidius matricariae (Hymenoptera: Braconidae), and its host, Myzus persicae (Homoptera: Aphididae)." Biological Control 50(3)

TALK OUTLINE

- Recap on biocontrol, mycoinsecticides and biocontrol agents
- What is compatibility and how do we test this?
- Biopesticides and biocontrol agents that get along
- Examples where they don't get along so well...
- Summary and additional resources

AZADIRACHTIN PRODUCTS

98.8%

100.00/

Contains 0.35 grams Azadirachtin per fluid ounce.	

OTHER INGREDIENTS

TOTAL

REPELLANT, ANTIFEEDANT, AND INSECT GROWTH REGULATOR (IGR)

Experiments done by JC Chong

This does not mean that all azadiracthin-based products would be harmful to *Orius*...it can vary with different formulations and rates

- Active ingredient: 1.2% azadirachtin
- IRAC code: UN (unknown MOA)
- Target pests: Broad spectrum
- Known compatibility of azadirachtin (in general; spray):
 - Predatory insects: harmless
 - Predatory mites: harmless to moderately harmful
 - Parasitoids: harmless

Minute pirate bug (Orius)

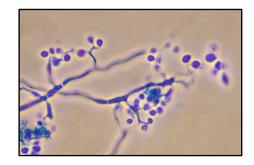
- EcoGarden used at 58 fl oz per acre (High rate for outdoor vegetables)
- Placed in cups with treated tomato leaves and flour moth eggs (food)
- 80% mortality for *Orius* adults, low egg production, and low hatch (Note data is from laboratory studies)

BEAUVERIA AND PIRATE BUGS

Jaronski et al. (1998) studied *Beauveria bassiana* GHA outdoors in cotton and melon fields that also released BCA's

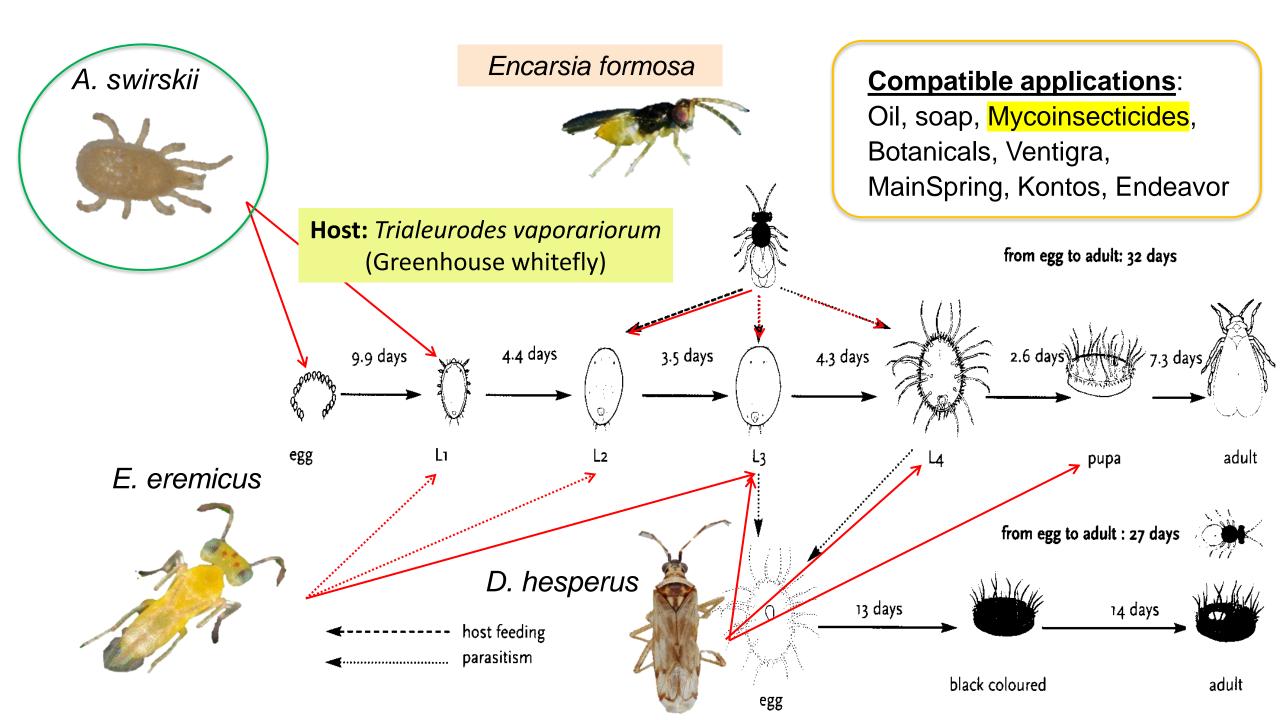
- 10% infection rate in *Orius* sp. sampled from cotton fields
- Minimal impacts on *Eretmocerus* wasps

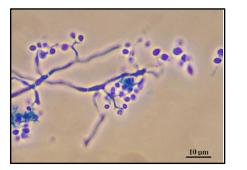
Laboratory studies on mycoinsecticides and compatibility with natural enemies usually exaggerate the negative impacts that might occur in the field or greenhouse

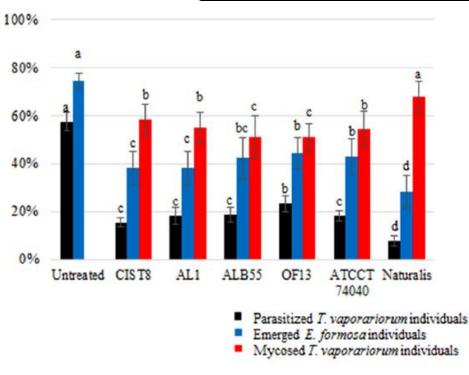

Jaronski et al. (1998). Effect of a Beauveria bassianabased mycoinsecticide on beneficial insects under field conditions. Brighton Crop Protection Conference.

Minute pirate bug (Orius)

Eretmocerus wasp







BEAUVERIA SPRAYS HURTING NATURAL ENEMIES

- The entomopathogenic fungal strains negatively affected *E. formosa* development and its parasitization activity of whitefly nymphs.
- This effect was more pronounced when the fungal strains were applied before parasitization.

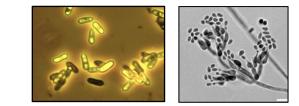
Oreste et al. (2016). Effect of Beauveria bassiana and Metarhizium anisopliae on the Trialeurodes vaporariorum-Encarsia formosa system." *Journal of Pest Science*, 89.

Photo: Koppert

ABOVE AND BEYOND IS WHERE WE BEGI

MYCOINSECTICIDES TYPICALLY SAFE FOR PARASITOIDS

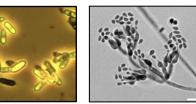

			Aphel	inidae							Braconi	dae				
	ombinations of Parasitoids and tomopathogenic Microorganisms	A. abdominalis	E. formosa 🔌	E. furuhashii	E. mundus	A. colemani		C. in sularis	C flavipes	D. longicau data	D. rapae	D. gelechiidivoris	H. hebetor	M. bicoloratus	M. pallidipes	S. agrili
	Bacillus thuringiensis var. aizawai															
Bacteria	Bacillus thuringiensis var. israelensis															
acto	Bacillus thuringiensis var. kurstaki												1 d			
B	Brevibacillus laterosporus															
ſ	Acremonium sclerotigenum										1					
	Beauveria bassiana	1 td	5 t		1		2		3		2 t					1
Ì	Lecanicillium longisporum		3 td													
Fungi	Lecanicillium muscarium		1 ^t	1 td		1 ^t	2				1					
Fu	Metarhizium anisopliae		1 ^t				1		4	1		1 ^t	2 ^t			
	Metarhizium brunneum						1									
	Metarhizium robertsii									1						
ľ	Paecilomyces variotii										1					
<i>•</i>	Simplicillium sp.										1					
nse	Helicoverpa armigera NPV	icoverpa armigera NPV											1 ^{td}			
Viruse	Spodoptera exigua MNPV												1^{td} 1^{td}			
	Spodoptera frugiperda MNPV							2 ^t								
Total		1	10	1	1		7	2	7	2	6	1	4	1	1	1


Green = combination reported as compatible; **red** = combination reported as incompatible; no fill = no report of compatibility

Koller et al. (2023). Entomopathogens and Parasitoids Allied in Biocontrol: A Systematic Review. Pathogens, 12(957). https://doi.org/10.3390/pathogens12070957

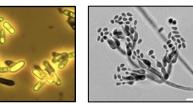
TALK OUTLINE

- Recap on biocontrol, mycoinsecticides and biocontrol agents
- What is compatibility and how do we test this?
- Biopesticides and biocontrol agents that get along
- Examples where they don't get along so well...
- Summary and additional resources



TAKE HOME MESSAGES

- The safety of mycoinsecticides is specific, depending on isolate (the TGAI strain), host (pest), application methods, rates, and the biocontrol agent under evaluation
- Do your homework before tank mixing products
- Talk to your BCA and biopesticide suppliers about your biocontrol programs (they might have the perfect suggestions for growers with similar needs)
- Use the compatibility websites and apps; get the most for your money


ABOVE AND BEYOND IS WHERE WE BEG

TAKE HOME MESSAGES

- The safety of mycoinsecticides is specific, depending on isolate (the TGAI strain), host (pest), application methods, rates, and the biocontrol agent under evaluation
- Do your homework before tank mixing products
- Talk to your BCA and biopesticide suppliers about your biocontrol programs (they might have the perfect suggestions for growers with similar needs)
- Use the compatibility websites and apps; get the most for your money

ABOVE AND BEYOND IS WHERE WE BEG

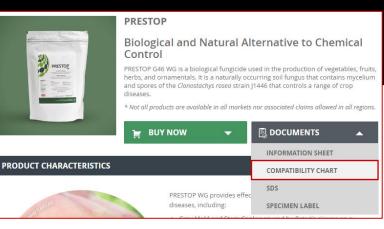
COMPATIBILITY (TANK MIXES)

BioWorks Product Compatibility

BioWorks Product	Second Product Brand name ▲	Compatibility (* See Comments) 🔺				
EpiShield™						
EpiShield™	Holt-X [®]	Yes*				
EpiShield™	HilStop®	Yes				
EpiShield™	Interpretation SuffOil-X [®]	Yes*				
EpiShield™	BotryStop® WP	Yes*				
EpiShield™	• ON-Gard®	Yes*				
EpiShield™	CEASE®	Yes				
EpiShield™	Agri-Mek [®] SC	Yes				
EpiShield™	🖶 Nealta® Miticide	Yes				
EpiShield™	* Shuttle® O	Yes				
EpiShield™	Hontos®	Yes				
EpiShield™	Pylon [®]	Yes				
EpiShield™	Akari® 5SC	Yes				

BOTANIGARD® PRODUCT COMPATIBILITY

All products tested for compatibility and reported in this document have been evaluated for impact on *Beauveria bassiana* strain GHA spores and physical compatibility only. Tests were not carried out to evaluate impact on the partner product integrity or for plant phytotoxicity. Compatibility has been tested at normal tank mix dilutions, not in concentrated stock tank dilutions (such as for injecting at 1:100). Physical compatibility can be impacted by your water quality, tank residues, or the addition of other materials in the spray tank. All chemistries available have not been tested. As a rule of thumb, for unlisted products, wait 4-5 days before or after a fungicide apolication to apoly


BotaniGard. Most insecticides will not harm BotaniGard. Ask your distributor for information regarding specific products.

*Compatibility with spores applies to BotaniGard® ES, BotaniGard® 22WP, Mycotrol® ESO and My-

> Read and follow label directions for all tank mix materials. Always maintain constant agitation in your spray tank. Make applications of tank mix solutions as soon as possible after mixing.

ACTIVE INGREDIENT(S)	BRAND NAME	MAXIMUM TESTED RATE	COMPATIBILITY
Alcohol Ethoxylate and Alkyl Phenol Ethoxylate	Activate PlusTM	4 pts/100 gal	
Aklylphenol ethoxylate, alco- hol ethoxylate, tall oil fatty Acids	Activator® 90	4 pts/100 gal	
Paraffinic oil, Polyol fatty acid esters, and Polyethoxylated derivatives	Agridex®	2 gal/100 gal(2.0% v/v)	Yes, poor emulsion with ES

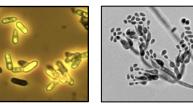
CERTIS Biologicals

TANK MIX COMPATIBILITY

Compatible

COMPATIBILITY CHART

Active Ingredient (a.i.)	Duration (hours)	Brand Names
Azoxystrobin + Difenoconazole	6	Ortiva Top
Ametoctradine + Metirame	б	Enervin
Bacillus pumilus QST 2808	6	Sonata
Bacillus subtilis QST 713	6	Rhapsody
Bacillus subtilis strain IAB/BS03	б	Aviv
Bacillus thuringiensis subsp. aizawai, strain ABTS-1857	6	Xentari Bio Insecticide
Bacillus thuringiensis subsp. kurstaki, strain ABTS-351	6	Dipel DF
Beeswax, plant-based oils	б	DeccoNatur550
Boscalid + Kresoxim-methyl	6	Collis
Boscalid + Pyraclostrobin	6	Pageant Intrinsic Pristine
Burkholderia spp. A396 (heat killed)	б	Venerate XC
Canola Oil 96%	6	Vegol Crop Oil
Chestnut wood extract (80% tannins)	6	Dexa FL
Chromobacterium substugae PRAA4-I	б	Grendevo
Coniothyrium minitans CON/M/91-08	6	LALSTOP CONTANS WG
Copper Hydroxide	6	Kocide 3000
Copper Oxychloride + Copper Hydroxide	6	Badge SC Badge X2
Cuprous Oxide	6	Nordox
Cyflufenamid	6	Cyflodium
Cyprodinil + Fludioxonil	6	Switch
Fenhexamid	6	Decree 50 WDG Elevate
Fludioxonil	б	Geoxe WG
Fluopicolide + Fosetyl-Al	6	Profiler
Fluopyram + Trifloxystrobine	6	Broadform Luna Sensation
Fosetyl Al	6	Aliette 80
Magnesium Oxide + Sulphur Trioxide	6	EpsoTop
Mandipropamid + Zoxamide	6	Revoluxio
Mefentrifluconazole	6	Avelyo Maxtima
Metirame	6	Polyram DF
Micronized Sulfur	6	Microthiol Disperss


ABOVE AND BEYOND IS WHERE WE BEGIN

TAKE HOME MESSAGES

- The safety of mycoinsecticides is specific, depending on isolate (the TGAI strain), host (pest), application methods, rates, and the biocontrol agent under evaluation
- Do your homework before tank mixing products
- Talk to your BCA and biopesticide suppliers about your biocontrol programs (they might have the perfect suggestions for growers with similar needs)
- Use the compatibility websites and apps; get the most for your money

ABOVE AND BEYOND IS WHERE WE BEG

Common Pests and their Natural Enemies

Thrips

- Orius insidiosus
- Amblyseius cucumeris
- Amblyseius swirskii
- Stratiolaelaps scimitus
- Dalotia coriaria
- Steinernema feltiae

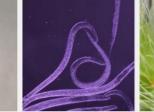
Aphids

- Aphidius colemani
- Aphidius ervi
- Aphidius matricariae
- Aphelinus abdominalis
- Aphidoletes aphidimyza
- Chrysoperla rufilabris

- Whitefly
 - Encarsia formosa
 - *Eretmocerus eremicus*
 - Amblyseius swirskii
 - Dicyphus Hesperus
- Mites (spider, broad)
 - Amblyseius cucumeris
 - Amblyseius californicus
 - Amblyseius andersoni
 - Amblyseius swirskii
 - Phytoseiulus persimilis

RELATED IPM SOLUTIONS

BioLacewing Rufilabris) lead more


BioCarnea (laevigatus) (Lacewing) Read more

BioCucumeris Read more

BioOrius

Read more

BioStratio Read more

BioOrius (insidiosus) Read more

Fungus gnats

- Steinernema feltiae
- Dalotia coriaria
- Stratiolaelaps scimitus

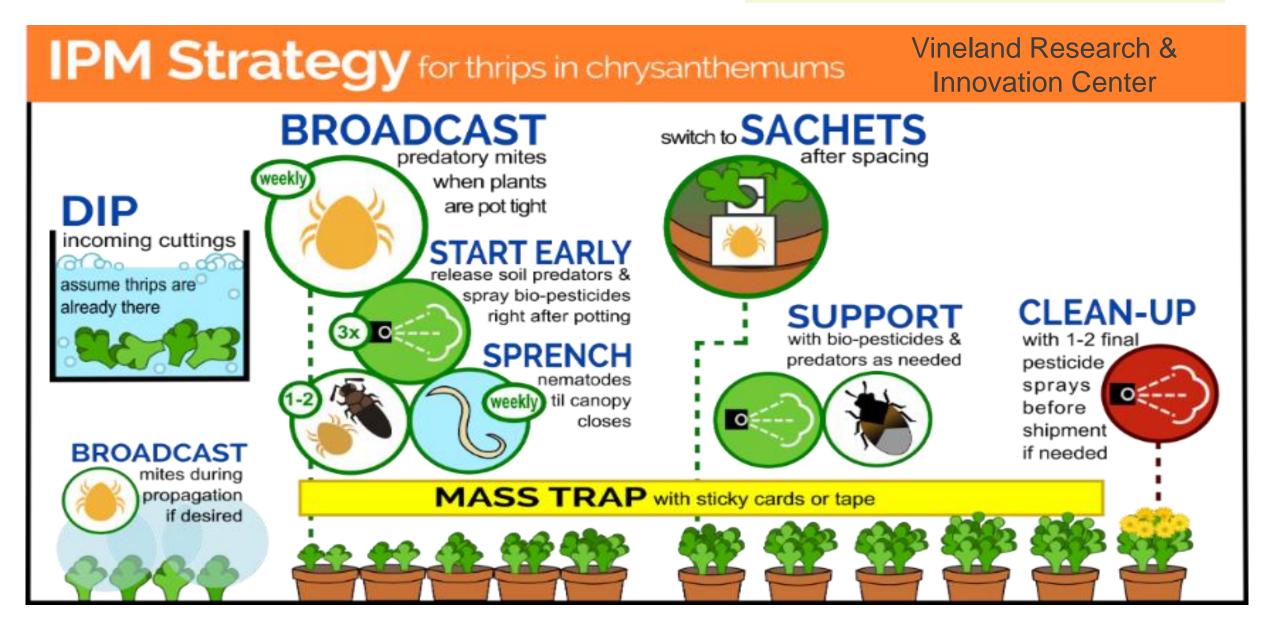
BioSf

Read more

Successful Biocontrol Programs

Develop & follow a strategy:

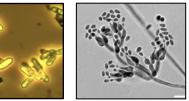
- Forecast inputs start to finish
- Cultural, mechanical, sanitation
- Monitoring, scouting, recordkeeping
 Pest ID essential
- Use & timing of compatible inputs
- Consider all possible pest problems


Be proactive, not reactive!

1			2014	Crop 1	Crop 2	Crop 3	Crop 4	Crop 5	Aphids - a	Crop 6	Crop 7	Crop 8	Crop 9	Crop 10	Thrips
2		Jan-Mar			Apr-Jun				Jul-Sep				Oct-De		
4	18-Dec	Hypoaspis	35.2	01-Apr		s 72.:		08-Jul	Hypoaspis	35.2		07-Oct	Hypoaspis		1
5		A. cuc	13.7		A. s sachets	492.3	2		Hypoaspis	35.2			A. swirskii	154.2	
6	20-Dec	Nemasys	179		Hypoaspis	35.3	2	17-Jul	A. swirskii	102.8			A. californi	i 17.9	
7	30-Dec	Hypoaspis	35.2		A.cuc	27.4		22-Jul	Nemasys	369			Nutrimite	280	
8		A. cuc	13.7	08-Apr	A. cuc	27.4			Hypoaspis	35.2		15-0ct	Hypoaspis	52.8	5
9	06-Jan	A. cuc	13.7		Hypoaspis	35.3	2		A. swirskii	102.8			A. swirskii	102.8	
10		Hypoaspis	35.2		Nemasys	369)		Orius	35.9			Enc/Eret Bl	i 122.2	
11	13-Jan	Hypoaspis	35.2	14-Apr	A. swirskii	129.1		29-Jul	Hypoaspis	35.2		21-0ct	Nutrimite	280	
12		A. cuc	13.7	15-Apr	Hypoaspis	35.3	2		A. swirskii	102.8			Hypoaspis	52.8	8
13	21-Jan	A. cuc	13.7	22-Apr	Persimilis	24.2			Orius	35.9			A. swirskii	102.8	
14		Hypoaspis	35.2		Orius	35.9)		BotaniGari	988.8			Eret, Mix	167.4	
15	28-Jan	A. cuc	13.7		A. ervi	59.2		06-Aug	Hypoaspis	35.2		28-Oct	A. swirskii	154.2	
16		Hypoaspis	35.2		Encarsia	27.2	2		A. swirskii	205			Hypoaspis	52.8	5
17		Nemasys	179		Hypoaspis	35.3	2		Orius	35.9			Eret. Mix	167.4	
18		A. colemani	63		A. cuc	27.			A, cuc Sach	e 225.3			Nemasys	369	
19	04-Feb	A. colemani	63		A.swirskii	102.0	3		A, cuc Sach			04-Nov	A. swirskii	154.2	
20		A. cuc	13.7	29-Apr	Hypoaspis	35.3	2	12-Aug	A. swirskii	205.6			Hypoaspis	52.8	·
21		Hypoaspis	35.2		A. cuc	27.4			Hypoaspis	35.2			Met52	195.75	
22	11-Feb	A. colemani	63		A. swirskii	102.8	3		Aphidius	21			Nutrimite	280	1
23		A. cuc	13.7	O5-May	Hypoaspis	35.3	2		Nutrimite	280		11-Nov	A. swirskii	154.2	

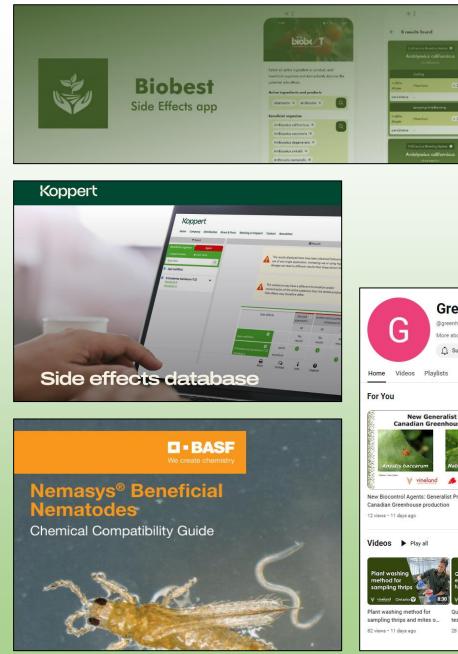
http://greenhouseipm.org/

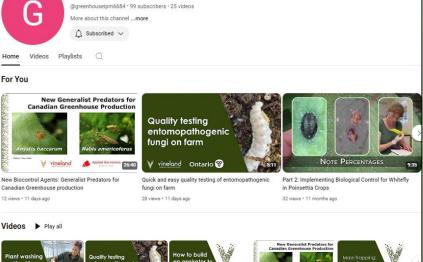
Start Clean, Stay Clean


Don't always need to start from scratch. Effective IPM programs are out there!

TAKE HOME MESSAGES

- The safety of mycoinsecticides is specific, depending on isolate (the TGAI strain), host (pest), application methods, rates, and the biocontrol agent under evaluation
- Do your homework before tank mixing products
- Talk to your BCA and biopesticide suppliers about your biocontrol programs (they might have the perfect suggestions for growers with similar needs)
- Use the compatibility websites and apps; get the most for your money





ABOVE AND BEYOND IS WHERE WE BEG

Program Resources

- GreenhouseIPM YouTube Playlist
- Biological Crop Protection **Research Services**
- <u>Thrips identification key</u>
- Grower Guide: Quality
- Assurance of Biocontrol

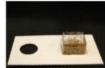
Difference between males and females Almost all adults are female. Females have a yellow abdomen, males are completely black

Signs of activity in the crop

vinelandresearch.com/research-program/biological-crop-protection/

Encarsia formosa

Pupae on cards or in blister packs


Quality assessment at arrival

..........

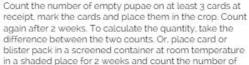
Packaging

Black (greenhouse whitefly) or golden (Bemisia) parasitised scales after 5 weeks

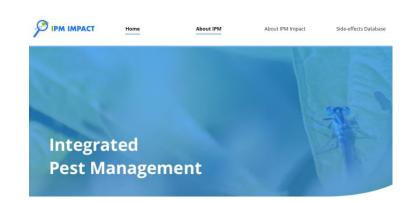
From top to bottom. Encarsia pupae on card (Koppert). Encarsia pupae in blister pack. container setup Wineland Research and Innovation Centrel

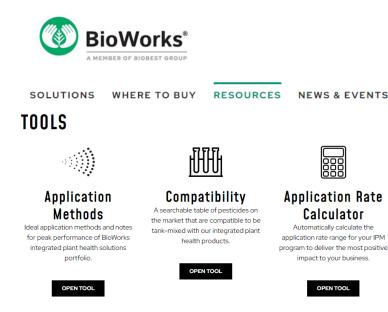
From left to right: Parasitized (black) and unparasitized (white) greenhouse whitefly pupae (Biobest). parasitized Bernisia pupa (IODHO-Maud Dubois)

GreenhouseIPM



How to build an insect Quick and easy quality testing of entomopathogeni... aspirator for collecting thrip... 28 views • 11 days ago 5 views • 11 days ago

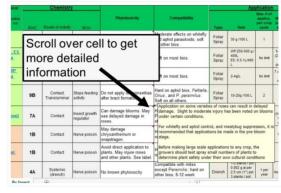

emerged adults. Add a piece of yellow sticky card in the container for easy counting. An even distribution of adults


on the card suggests flight capability. Repeat either method for at least 3 cards or blister packs

...

Compatibility Resources

- IOBC https://www.iobc-wprs.org/
- Greenhouse IPM http://greenhouseipm.org/
- Koppert https://sideeffects.koppert.com/
- BioBest https://www.biobestgroup.com/side-effects-app
- IPM Impact https://www.ipmimpact.com/
- BioWorks https://bioworksinc.com/ask-us/productcompatibility/
- BASF https://betterplants.basf.us/products/nemasys-beneficial-nematodes.html
- Canada Onfloricuture/OMAFRA GH Floriculture Registered Pesticides 2019: https://onfloriculture.com/
- **Biopesticide companies**
- Natural enemy companies



OMAFRA Greenhouse Floriculture Registered Pesticide Spreadsheet 2019.

Updated Information on Pesticide Products for use on Greenhouse Ornamental crops can be found in this downloadable and editable spreadsheet. This file contains all information growers need to make an informed decision. This includes phytotoxicity, compatibility with natural enemies, and direct links to the most recent label. Detailed notes can be found in cells with a red tab in the corner.

OPEN TOOL

Additional IPM Resources

- Consultants such as https://bugladyconsulting.com
- Universities and extension services (contact your local extension office)
- Vineland Research & Innovation Center
 <u>https://www.vinelandresearch.com/</u>
- Crops that attract insects
 <u>https://www.canr.msu.edu/news/crops_that_are_insect_magnets_in_the_greenhouse</u>
- IRAC <u>https://irac-online.org/</u> & FRAC <u>https://www.frac.info/</u>
- MSU/IRAC pesticide resistance database
 <u>https://www.pesticideresistance.org/</u>
- BPIA: <u>https://www.bpia.org/</u>
- Canada Onfloricuture Blog <u>https://onfloriculture.com/</u>
- Bee Precaution pesticide rating
 <u>https://www2.ipm.ucanr.edu/beeprecaution/</u>
- ESA <u>https://www.entsoc.org/</u>
- GrowerTalks Magazine <u>https://www.growertalks.com/</u> 5 part series on best practices for biocontrol and many more great articles!

Acknowledgments & References

- University of Maryland Extension
- Julie Graesch & Michael Brownbridge (BioWorks)
- JC Chong (SePRO)
- John Sanderson (Cornell)
- Suzanne Wainwright-Evans (Bug Lady Consulting)
- Vineland Research Center

