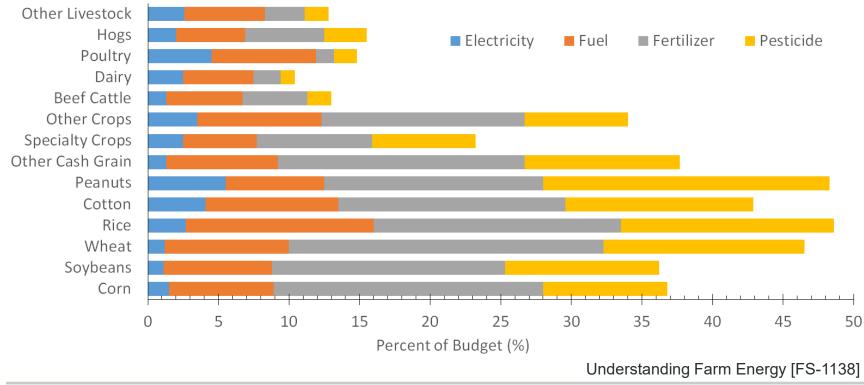


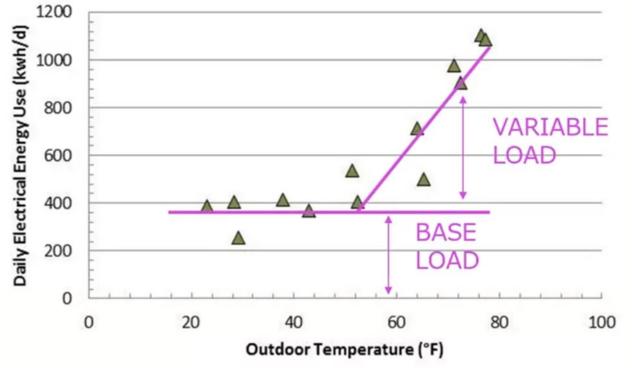
Energy Savings

Farm Energy Efficiency and Opportunities

May 3, 2023 Poultry Grower Meeting

Drew Schiavone, PhD Energy Specialist University of Maryland

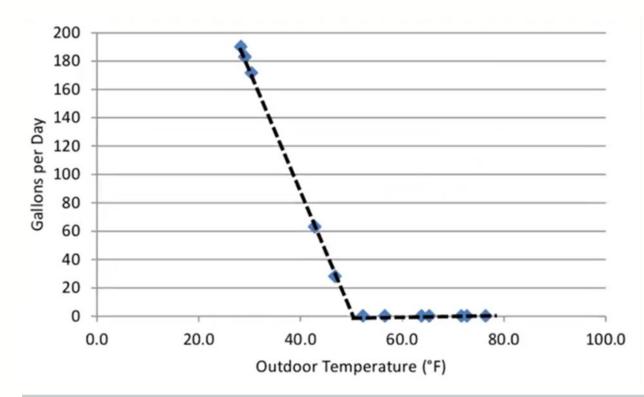



Energy Resources

EXTENSION

FEARLESS IDEAS

UNIVERSITY OF


EXTENSION

Electricity

- Lighting
- Motors, fans
- Motors, food systems
- Motors, pumps

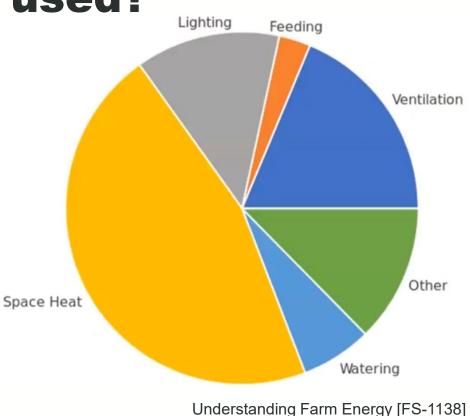
Refrigeration

Computer Controls

FEARLESS IDEAS

UNIVERSITY OF

EXTENSION

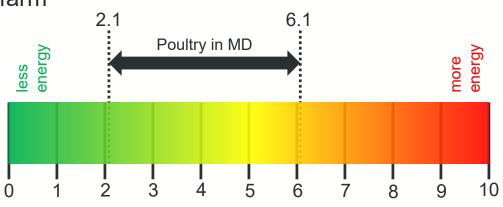

Heating Fuel

- Propane
- Biomass (pellets/wood chips)

• Birds

Farm-to-Farm Variation

- Different *locations*
- Different equipment
- Different ways of managing

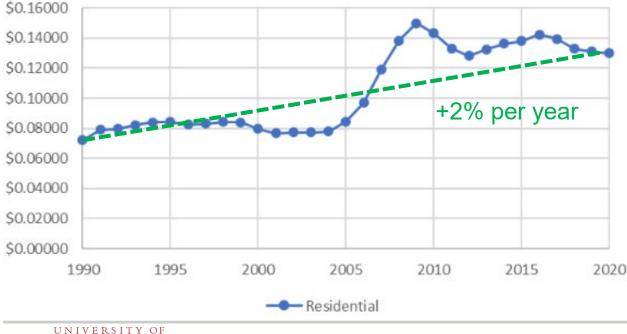


How efficient is your farm?

Energy Use Index (EUI)

- Add all farm energy use over a year (except farmstead and field operations)
- Divide by bird capacity of your farm

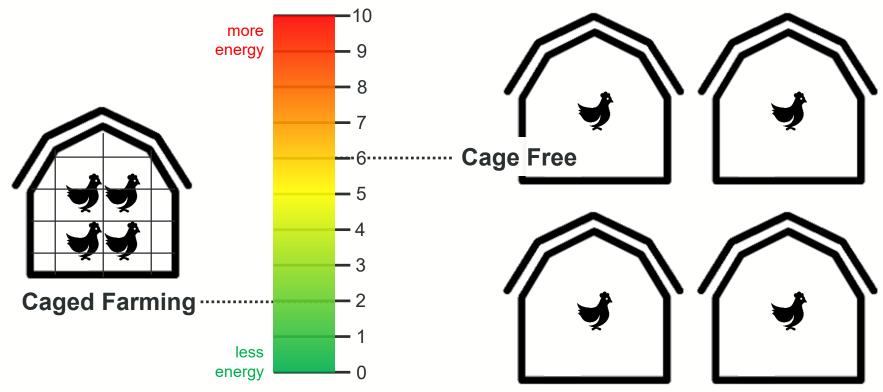
EUI =
$$rac{Energy \, Use \, [kWh/yr]}{Bird \, Capacity \, [#birds]}$$



kWh / bird / year

Emerging Energy Issues

Cost of Electricity in Maryland (\$/kWh)


Residential

 charge for amount of energy used (\$/kWh)

Commercial

 Charge for amount of energy used (\$/kWh) + charge for highest use rate (\$/peak kW)

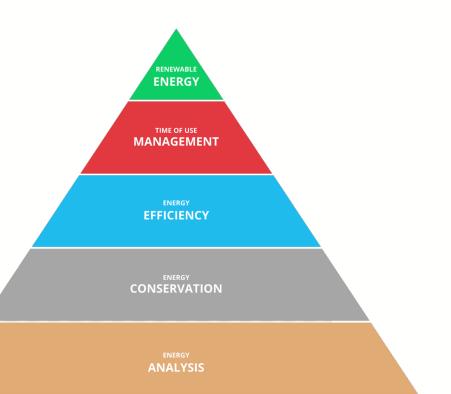
Emerging Energy Issues

How to save energy?

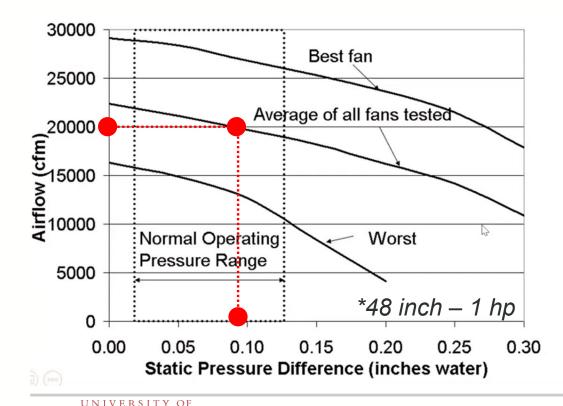
Tier 4 When the system is modified to use efficiency, less renewable energy is needed

Tier 3 Peak demand when the utility provider charges a higher amount for energy use

Tier 2 Purchasing & installing efficient equipment & processes



Tier 1 Largely based on behavioral & operational practices. Best ROI



UNIVERSITY OF

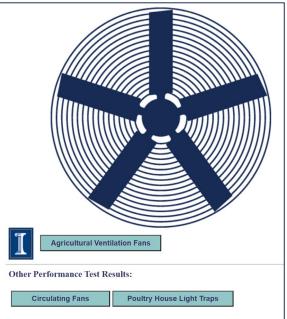
Tier 0 A survey of energy flows within a system to reduce the energy input

FEARLESS IDEAS

EXTENSION

Design & Quality

- better blade-housing
- quality motors
- ability to work against pressure

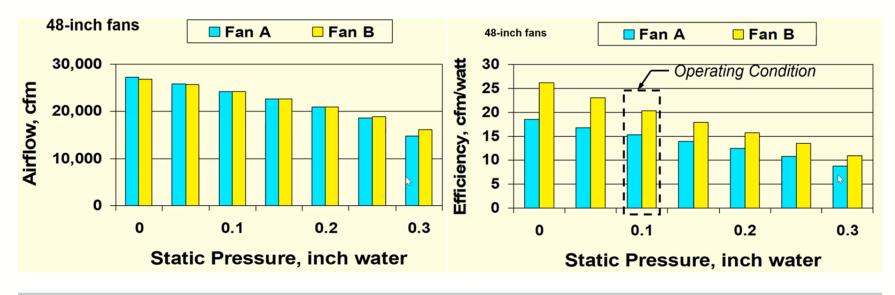


Example fan data: 48-inch diameter; 1 HP fan

Static Pressure Difference (inches water)	Fan Airflow (cfm)	VER (cfm / Watt)
0.00	23,963	34.7
0.05	22,703	29.5
0.10	21,503	24.8
0.15	20,011	20.3
0.20	18,328	15.2
0.25	16,215	9.2
0.30	13,883	N/A

BESS Fan Performance Test Results

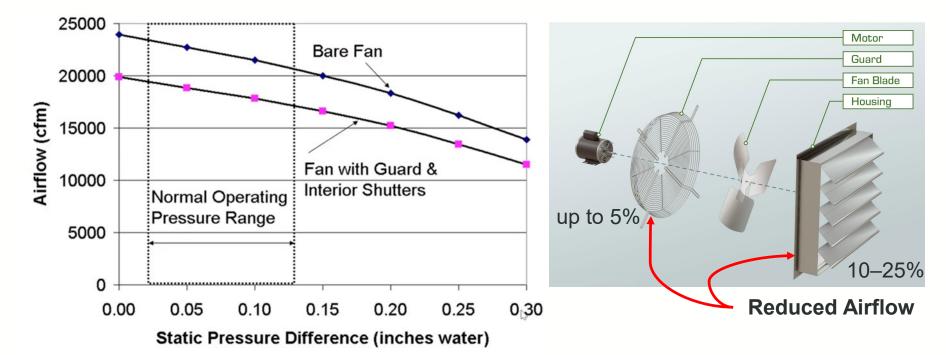
www.bess.uiuc.edu


Minimum efficiency: VER = Ventilation Efficiency Ratio

Static Pressure Difference (inches water)	Fan Efficiency, VER (cfm / Watt)			
	24-inch	36-inch	48-inch	
0.05	13	18	20	
0.10	12	16	18	
0.15	11	14	15	
0.20	10	11	13	

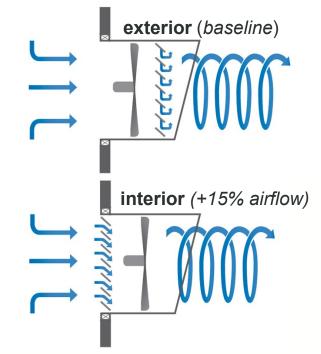
Choose efficient fans with **20 cfm/W** or better for 48-inch tunnel fans

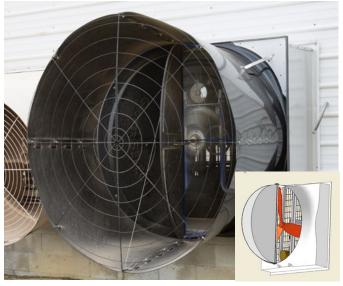
Example: Fan airflow & efficiency performance is similar


UNIVERSITY OF MARYLAND EXTENSION

Upfront Costs	Fan A (\$500 / fan)	Fan B (\$1,000 / fan)
Unit Price x 8 fans	\$4,000	\$8,000
Operating Costs		
4 fans @ 4,000 hr	\$2,032	\$1,520
4 fans @ 2,500 hr	\$1,270	\$950
Annual Total	\$3,302	\$2,470
10-yr Total	\$33,020	\$24,700
10-yr Added Cost	\$8,320	\$0
10-yr Total Cost	\$12,320	\$8,000

*4,000 hrs is about 5 ½ months †Operating cost at \$0.08/kWh


Heat & Vent > Accessories

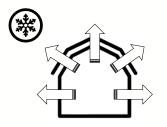

☺ Select fans rated with accessories in place

Heat & Vent > Accessories

Discharge cone (+15 to 25%)

Butterfly shutter (+25 to 35%)

☺ Discharge cones and interior shutters improve performance by 15% apiece


Heat & Vent > Maintenance

☺ Maintain belts and remove dust for about 1/3 more efficiency

Heat & Vent > Environmental Control

Winter Heat Loss

from ventilation system

Retain Heat with lower ventilation Remove Excess Ammonia raise ventilation later

Removes excess ammonia

Poor air quality Wet litter Low bird productivity

Economic loss

Negates fuel savings

need 7 to 10 times the ventilation rate to recover good air quality

Heat & Vent > Environmental Control

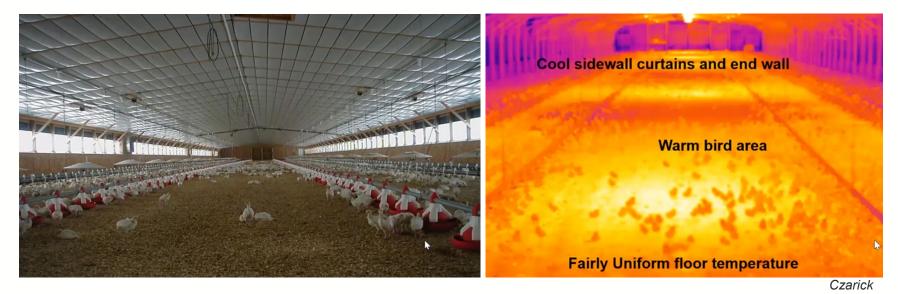
Cold weather ventilation for air quality based on moisture and ammonia (*not just temperature-control*)

Ventilation removes:

- Moisture
- Ammonia
- Heat

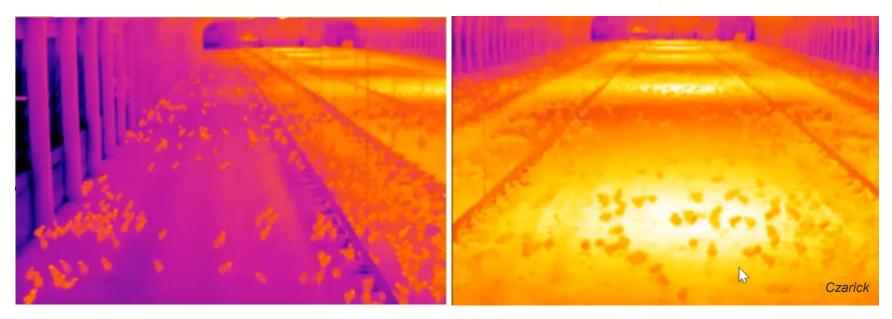
High Moisture

- soaks into litter
- raises ammonia
 (~2 day lag time)


EXTENSION

Monitor humidity (ammonia) with handheld instruments to manage ventilation

Our eyes see visible light in a poultry house


Infrared cameras see surface temperature

cold air infiltration near uninsulated walls

uniform heating system installation

Stratification of warm air near ceiling is not useful Forced air furnace with heat going to ceiling 103.1 100 4 Czarick FORCED AIR

Direct floor warmth

Reduced house air temperature

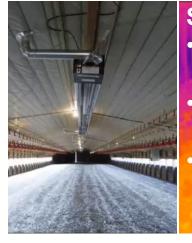
○ Radiant heat allows lower house air temperature & reduces fuel use by ~30%

Well-insulated house keeps walls warmer

Overhead radiant tube brooders

Heat & Vent > Infiltration

uneven temperature conditions and infiltration with natural ventilation curtain sided houses



curtain houses use 5-10% less energy with more fuel (heat) & less electricity (light, fans)

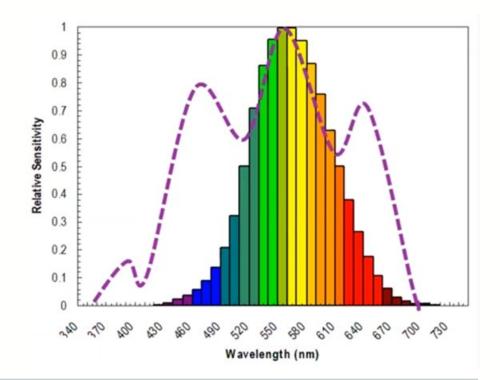
Heat & Vent > Infiltration

radiant tube brooder in curtain houses with cold uninsulated walls

EXTENSION

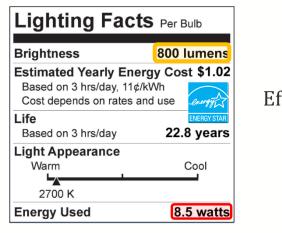
SP Test

- Close all openings
 - (inlets, shutters, doors)
- SP test with a 36-in fan (0.15 in SP difference)
 SP test with a 48-in fan (0.30 in SP difference)



static pressure test house to determine need for infiltration reduction

Lighting


Lumens per watt

(electricity into human-visible light)

Lighting> Efficiency

fico au —	lumens
ficacy =	Watts

Lighting	Efficacy
Туре	(<i>Im/W</i>)
Halogen	21
CFL	70
Metal Halide	68
HPS	80
LED	119

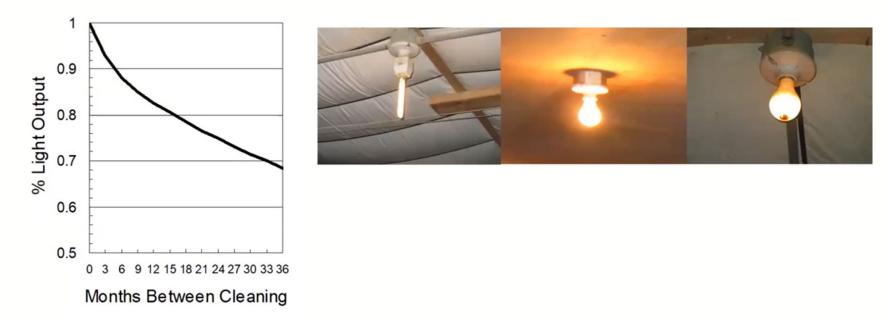
Lighting	Number of		Input		Annual		Utility	Annual
Туре	Units (#)	F	Power (W)		Use (hr)		Rate (\$)	Costs (\$)
Metal Halide	10	×	50	×	4,200	×	0.0994 =	208.74
CFL	10	×	24	×	4,200	×	0.0994 =	100.20
LED	10	×	13	×	4,200	×	0.0994 =	54.27

Operating cost of 24W CFL, 50W metal halide & 13W LED with same light output

Lighting > Illuminance

Work area or task	Illuminance
	(lux)
Detailed Bench Work	1,000
Veterinary Treatment	1,000
Office, Task Lighting	750 – 1,000
Egg Processing	700 -1,000
Egg Handling	500
Rough Bench Work	500
General Machinery Repair	300
Animal Handling	200
Feed Room / Mixing	200
Ladders / Stairs	200
Loading Platform	200
Equipment / Utility Rooms	100 – 200
Farm Shop / Active Storage	100
Housing Area / Feed Bunk	100
General Storage	50

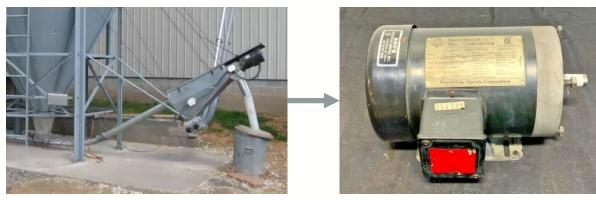
Lighting Options	Flock Age		Flock Age Light Intensity lux (foot-candles)	
Option 1	Pullets Brooding Growing Laying	(1 - 3 days) (4 days - 19 weeks) (20 - 72 weeks)	20 (2) 5 (0.5) 10 - 30 (1 - 3)	23 9 to 11 Increase by ½ hour per week to maximum of 16 - 17 hours.
Option 2	Pullets Brooding Growing: Laying	(1 - 3 days) (4 days - 2 weeks) (2 - 3 weeks) (3 - 4 weeks) (4 - 5 weeks) (5 - 6 weeks) (6 - 7 weeks) (8 - 9 weeks) (9 - 20 weeks) (20 - 72 weeks)	20 (2) 5 (0.5) 5 (0.5) 5 (0.5) 5 (0.5) 5 (0.5) 5 (0.5) 5 (0.5) 5 (0.5) 5 (0.5) 10 - 30 (1 - 3)	23 23 21 19 17 15 13 11 11 Increase by ½ hour per week to maximum of 16 - 17 hours.


☺ Typical light levels for broilers and layers are about **10 to 20 lux** (1 to 2 foot-candles)

UNIVERSITY OF

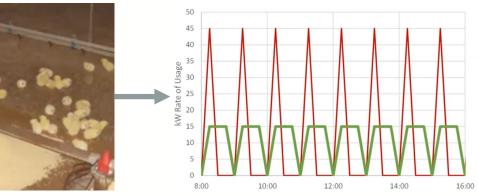
EXTENSION

Lighting > Maintenance



☺ Cleaning every 4 months instead of every year allows you to install ~15% fewer fixtures and still maintain the same light level

Feed & Water


Motor Efficiency

high efficiency motor

Feed & Water

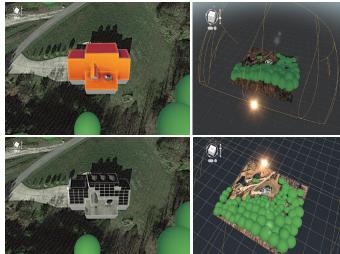
Management & Maintenance

Demand Management

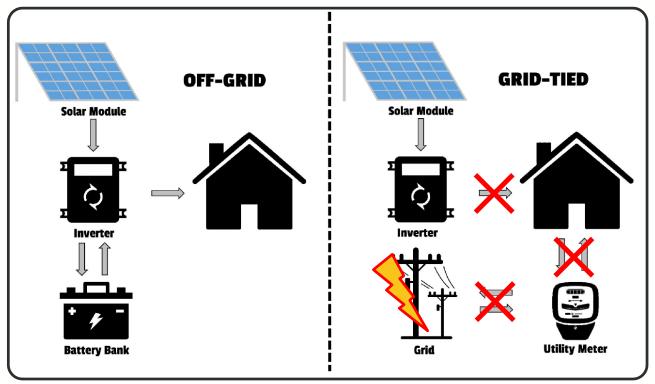
Run all feeders at the same time (max kW = **45**)

Spread out the timing of your feeders (max kW = **15**)

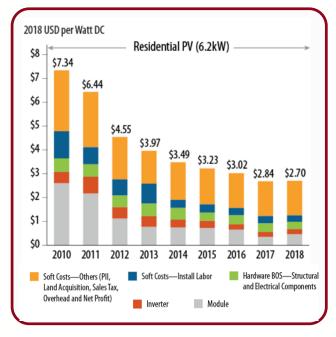
Feed & Water


Watering System

- Eliminate leaks
- Look for low pressure systems
- Variable speed drive for pump


Alternative > Solar

	Is Solar PV Right for Me?	√/X
1.	Do you have a <u>south-facing</u> roof?	
2.	Does your roof have enough space for PV panels?	
3.	Is your roof <u>unshaded</u> ?	
4.	What is the angle of your roof?	
5.	Is your roof in good condition?	



Alternative > Solar

Alternative > Solar

System	Average	Average
Size	Cost	Cost
(kW)	(\$) before ITC*	(\$) after ITC*
5	13,867	10,261
6	16,640	12,314
7	19,413	14,366
8	22,187	16,418
9	24,960	18,470
10	27,733	20,523
-	27,733 Investment Tax Cred	

Solar costs in Maryland

Battery Storage Costs

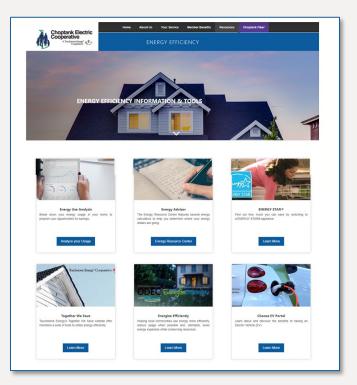
Battery Capacity (kWh)	Battery Only (\$/kWh)	Battery + Inverter (\$/kWh)
1–5	800	1,652
6–10	705	1,079
11–15	697	903
16–20	690	991
All	727	1,160

Equipment	\$	kWh
Tesla Powerwall 2	10,284	14
Redflow Zcell	9,256	10
LG Chem Resu	6,020	9.8
	0,020	0.0

NREL (2018). Solar Installed System Cost Analysis [via NREL.gov]

Financing > Incentives

Inflation Reduction Act



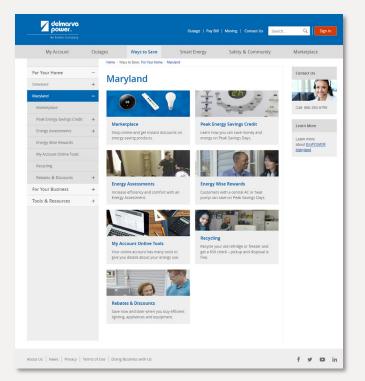
	New in 2023: 40% grants for rural businesses, farms and agricultural producers!
	Businesses must be located in rural areas with populations of 50,000 residents or less. Agricultural producers may be in rural non-rural areas, must have at least 50% of their gross income coming from agricultural operations.
	Eligible projects include renewable energy (e.g., solar, wind, biomass) and energy efficiency upgrades (e.g., high efficiency HVA insulation, refrigeration, switching from diesel to electric irrigation motors).
	Deadline for fiscal year 2023 application is March 31, 2023 . More details and applications at USDA.gov.
	Updated 1/9/2023
	Commercial + Solar
	Currently: The current 26% Commercial Solar Investment Tax Credit is increased to 30% and extended through 2024; the 30% applies to solar projects placed in service during or after 2022.
	Coming in 2023: The base credit applies to projects <1 MW or that meet prevailing wage and apprenticeship requirements. If a project is >1 MW and does not meet those requirements, the base credit is 6%.
	There will also new credit adders that can be stacked for additional benefit:
	Up to 10% for projects that are located in "energy communities" (defined as brownfield sites, communities with high fossil employment and high unemployment, and/or communities with closed coal mines or coal-fired power plants). Up to 10% for solar projects S4W located in low-income communities; applications will be required. Up to 20% for solar projects S4W and built as part of an affordable housing project or to benefit low-income household applications will be required. Up to 10% for using US-manufactured solar products and construction material. Energy storage facilities are also eligible.
1	In 2025: this provision becomes the *Clean Electricity Investment Credit*; extended through 2032 or until emission targets an reached.
	Visit Solar Energy Industries Association (SEIA) for a review of the Investment Tax Credit Extension (Section 1302), Production Tax Credit Addition (Section 1301), and Transition to New Technology Neutral Credit (Sections 13701 and 13702).
	View Federal Solar Tax Credits for Businesses via Energy.gov
	Note: This provision also allows a direct pay option for tax-exempt entities. More to come on this!
	In addition to federal incentives, many businesses in Minnesota also have access to Property Assessed Clean Energy (PACE) financing for solar projects.

go.umd.edu/IRA

Financing > Incentives

Rebates & Discounts		
Electric Water Heater	\$250 Rebate	
Heat Pump Water Heater	\$300 Rebate \$300 FITC	

Programs & Incentives		
Chop-A-Watt	\$7,000 in weatherization	
Beat the Peak	Reflected in PCA	


choptankelectric.coop/energy-efficiency

Ę

Financing > Incentives

Rebates & Discounts			
Air Purifier	\$40 Rebate		
Clothes Washer	\$75 Rebate		
Dehumidifier	\$30 Rebate		
Hybrid Water Heater	\$700 Rebate \$300 FITC		
LED Bulbs Fixtures	\$3 \$5 <i>Rebate</i>		
Refrigerator	\$75 Rebate		
Smart Thermostat	\$75 Rebate		

Programs & Incentives				
Appliance Recycling	\$50 Refrigerator \$25 AC			
Peak Energy Savings Credit	\$1.25 per kWh Bill Credit			
Energy Wise Rewards	Thermostat Auto Adjust			

www.delmarva.com/WaysToSave

Financing > Grants & Loans

50%

United States

Department of Agriculture

Rural Development

rd.usda.gov

FEARLESS IDEAS

Rural Energy for America Program (REAP)

Financing > Grants & Loans

Maryland Energy

Commercial, Industrial & Ag Grant (CI&A) *deep energy retrofit projects grants.* Awards: **\$10,000** to \$100,000

Jane E. Lawton Conservation Loan Program *loan finance for energy performance upgrades;* All Other: \$850,000 (FY21); 1% Interest rate

Maryland Energy Storage Income Tax Credit energy storage systems for commercial property; \$750,000 in certificates awarded each tax year

energy.maryland.gov

Maryland Agricultural & Resource-Based Industry **D**evelopment **Co**rporation

Maryland Urban Agriculture Commercial Lending Incentive Grant (MUACLIG)

- urban farmers to seek commercial lender financing the development or expansion of ag enterprise.
- Maximum incentive grant is \$10,000

Rural Business Energy Efficiency Improvement Loan Fund

• Loans for energy efficiency projects implementing recommendations of a third-party energy auditor 2,500 to \$30,000

marbidco.org

Financing > Grants & Loans

Residential Incentives

Grants & Loans

Bio-heating oil purchases	Receive tax credits for purchasing biofuels.
BeSMART Energy Efficiency Loan for Homeowners	Maryland Department of Housing and Community Development's loan provides financing to improve energy efficiency, ex.replacing and upgrading appliances, heating, ventilation and cooling systems, and whole house envelope improvements.
Clean Burning Wood Stove Rebate Program	Receive rebates for clean wood burning stoves.
Community Solar	Allows Maryland residents to purchase subscriptions for energy from community solar arrays. <i>Inactive program</i>
Community Solar LMI-PPA Program	Maryland PSC-approved Subscriber Organizations can apply to receive incentives for supplying PPAs that maximize value to low-to-moderate income (LMI) subscribers.

Grant Programs				
Community Solar LMI-PPA	December 16, 2022			
Offset PPA-related costs for SSOs providing for LMI	<i>variable</i>			
Low Income Solar Grant	November 15, 2022			
Design and install solar for a limited number of LI household	<i>up to</i> \$25,000			
Resiliency Hub Grant	March 1, 2022			
solar plus energy storage to serve as resiliency hubs for LMI	\$3,000 <i>per kW</i>			
Solar Canopy Grant	December 2, 2022			
Install parking lot and parking garage solar canopy systems	\$500 <i>per kW</i>			

Tax Credits & Rebates			
Clean Energy Rebate	June 30, 2023		
Purchase and install eligible systems at primary residence	\$1,000 PV \$500 WH		
Commercial Clean Energy	June 30, 2023		
Install eligible clean energy on facilities located in the state	variable		
Energy Storage Tax Credit	TBA (30%)		
install energy storage on residential or commercial property	\$5k home \$150k co		

energy.maryland.gov

Energy Resources

VIDEO

EXTENSION

NEWSLETTER

UNIVERSITY OF MARYLAND EXTENSION

CONTACT INFORMATION Drew Schiavone, PhD Western Maryland Research and Education Center phone: 301.432.2767 / email: dschiavo@umd.edu