ON-FARM SOLAR PV TRAINING WEBINAR SERIES

Webinar #1: Maryland's Solar Market SEP 30, 2020 1:00 PM – 2:00 P.M. (EST)

This module provides an introduction to the various forms of available energy and how solar power fits into the overall mix. Explore solar technology, research, and policy developments which support new and continued opportunities for on-farm solar in Maryland. Topics address the historical development of photovoltaics, the current trends, and future forecasts of the solar market in Maryland. Learn how solar initiatives such as Maryland's energy policy and renewable energy goals are impacting the state.

WEBINAR SCHEDULE

Module #1: Maryland's Solar Market SEP 30, 2020 1:00 PM - 2:00 P.M. (EST)

Module #2: Solar PV Basics OCT 7, 2020 1:00 PM – 2:00 P.M. (EST)

Module #4: Solar Regulations & Zoning OCT 21, 2020 1:00 PM – 2:00 P.M. (EST)

Module #5: Installation & Maintenance

program contact

Drew Schiavone dschiavo@umd.edu (301) 432-2767 ext. 342

This material is based upon work supported by the National Institute of Food and Agriculture, U.S. Department of Agriculture, through the Northeast Sustainable Agriculture Research and Education program under subaward #ENE20-165-34268

University programs, activities, and facilities are available to all without regard to race, color, sex, gender identity or expression, sexual orientation, marital status, age, national origin, political affiliation, physical or mental disability, religion, protected veteran status, genetic information, personal appearance, or any other legally protected class. If you need a reasonable accommodation to participate in any event or activity, please contact us at (301) 432-2767

ON-FARM SOLAR PV TRAINING WEBINAR SERIES

ZOOM INSTRUCTIONS

POLL

University programs, activities, and facilities are available to all without regard to race, color, sex, gender identity or expression, sexual orientation, marital status, age, national origin, political affiliation, physical or mental disability, religion, protected veteran status, genetic information, personal appearance, or any other legally protected class. If you need a reasonable accommodation to participate in any event or activity, please contact us at (301) 432-2767

RECORDING

Session Topics

Energy Sources

- primary energy sources & conversion
- total energy reserves
- renewable and nonrenewable
- thermal & electric solar
- photovoltaic progress

Solar Market

Farm Applications

TURBINE

HYDRO

Dispatchable

Non-Dispatchable

ENERGY SOURCES

Direct Solar to Thermal Superheated Fluid

Nipton, CA

Direct Solar to Electricity Photovoltaics

World Energy Use Renewables TWy/y TWy/y Solar 2015 18.5 23,000 2050 75 - 130 28 Wind OTEC 3 - 11**Finite** TWy **Biomass** 2 - 6Hydro Coal 830 3 - 4Petroleum 335 Geothermal 0.2 - 3.0 +Natural Gas 0.2 - 2.0220 Waves Uranium 185+ Tidal 0.3

Perez, M., & Perez, R. (2015). Update 2015--A Fundamental Look at Supply Side Energy Reserves for the Planet. *Natural Gas*, *2*(9), 215.

Solar Energy Potential

Photovoltaic

PV Effect Observed 1839 Alexander Becquerel 1887 Heinrich Hertz 1905 Albert Einstein

Silicon Cell Invented 1954 Bell Labs (NJ)

Solar PV in Space 1958 Vanguard 1 satellite

Remote Operations 1970 Railroads/Road Signs 1973 "Solar One" (UD)

Low-Cost Solar 1972 Wristwatch 1978 Calculators

Solar Market

- market share & growth potential
- current trends & future forecasts
- economic & policy drivers
- applications and PV use sector

Farm Applications

Electricity Generation

Electricity Net Generation US by Fuel Source

Energy Trends

US Renewable Electricity Net Generation

Data Source: U.S. EIA, Electric Power Annual [via <u>EIA</u>] *Data Source*: NREL, Renewable Electricity Futures Study [via <u>NREL</u>]

Energy Trends

Energy Trends

Renewable Electricity Gen

from selected fuels

Electricity Generation from selected fuels

Annual Energy Outlook 2020 with projections to 2050

US ENERGY PRODUCTION

- Modest growth in electricity demand
- Retirements of older, less efficient fossil fuel units
- Near term availability of renewable energy tax credits
- Continued decline in capital cost of renewables, especially solar PV

Maryland's

COAL

62%

2019

RENEWABLES

HYDRO 4% COAL

NUCLEAR

38%

14%

NATUR

AL GAS

38%

HYDRO^{1%}

NUCLEAR

30%

NATURAL

GAS

4%

2001

Maryland's Energy Consumption

Data Source: EIA. Electricity Data Browser: Table CT2. Primary Energy Consumption Estimates, 1960-2018, Maryland (Trillion Btu) [via **EIA**]

Potential Rooftop PV Generation

from all buildings % of each state's total electricity sales (2013)

Residential Potential Solar Market

residential based on solar capacity, retail rates, & incentives/policies

SEPA. (2015). Solar Fundamentals Volume 2: Markets [via SEPA]

solar irradiance

incentives & policies

retail electricity rates

(high avoided cost rate)

1.

2.

3.

NREL. (2016). Rooftop Solar Photovoltaic Technical Potential in the United States: A Detailed Assessment [via NREL]

Number of Countries with Renewable Energy Policies

Solar PV Global Capacity by country & region

REVE. (2019). In 2019 the solar PV market increased an estimated 12% to around 115 GW. *Evwind*. [evwind]

Renewables 2020 Global Status Report [via REN21]

Renewable Portfolio Standard (RPS)

What is an RPS?

- Regulatory, state-level mandates to increase energy production from renewable sources.
- "Solar Carve-Outs" mandate a portion of RPS come from solar (*may give rise to SREC markets*)

Barbose, G.L. (July 2019). U.S. Renewables Portfolios Standards: 2019 Annual Status Update [via <u>Berkeley Lab</u>]

RPS Component Addressed

Percentage Requirement Region Eligibility

Resource Eligibility

Multiple Components

Adapted from: Maryland Department of Natural Resources. (2019). Final Report Concerning MD RPS, Figure ES-1 [via <u>MD DNR</u>]

TIER I				
Solar	Geothermal			
Wind	Ocean			
Qualifying Biomass (<i>cultivated plant, waste</i>)	Small Hydroelectric Plant (<i>less than 30 MW</i>)			
Methane (<i>landfill or WWTM</i>)	Fuel Cell (<i>methane or biomass</i>)			
Poultry Litter Incineration (<i>in Maryland</i>)	Waste-to-Energy (<i>in Maryland</i>)			
Thermal Systems [‡] (<i>Geothermal & Biomass</i>)				

TIER II

Hydroelectric Power (other than pumped storage generation)

> *More Information*: Maryland Public Service Commission [via <u>PSC.STATE.MD.US</u>]

Incentives

What is an SREC?

- serves as "proof" that 1 MWh of solar energy was generated
- can be purchased separate from electrical service
- Utilities purchase "credits" from solar producers to demonstrate RPS compliance

Final Report Concerning the Maryland Renewable Portfolio Standard. (December 2019). PPES-MRPS-2019, DNR Publication No. 12-091619-167 [via MD DNR]

Solar Renewable Energy Credit (SREC)

RECs Retired in Maryland for RPS Compliance

Incentives

Maryland REC Retirement

SREC Pricing / MWh September 29, 2020

DC	\$ 430.00
MA	\$ 282.00
NJ	\$ 230.00
MD	\$ 79.00
PA	\$ 20.00
OH	\$ 9.00

https://srectrade.com

More Information: Public Service Commission of Maryland. (December 2019). Renewable Energy Portfolio Standard Report [via <u>MD PSC</u>]

Final Report Concerning the Maryland Renewable Portfolio Standard. (December 2019). PPES-MRPS-2019, DNR Publication No. 12-091619-167 [via <u>MD DNR</u>]

Greenhouse Gas Emissions Reduction Act (GGRA)

More Information: Greenhouse Gas Emissions Reduction Act (GGRA) [via <u>MD Dept of Environment</u>]

Regional Greenhouse Gas Initiative (RGGI)

More Information: Regional Greenhouse Gas Initiative (RGGI) in Maryland [via <u>MD Dept of Environment</u>]

Transportation & Climate Initiative (TCI)

More Information: Transportation & Climate Initiative [via <u>TransportationAndClimate.org</u>]

Incentives

What is Net Metering?

• Billing mechanism to virtually "bank" your unused generation, in exchange for kWh and/or financial credits.

Incentives

Investment Tax Credit (ITC)

• Congress enacted the Energy Policy Act of 2005 that included the non-refundable tax credit valued at 30% of the installed cost of a solar generator

Maryland Energy Storage Income Tax Credit

- energy storage systems on residential or commercial property in MD during Tax Year 2020
- \$750,000 in certificates awarded each tax year (*first come, first serve basis; currently 75.4% awarded*)
- Current law authorization for 2020, 2021, 2022

More Information: Maryland Energy Storage Income Tax Credit - Tax Year 2020. [via <u>Maryland Energy Administration (MEA)</u>]

Everything you need to know about the extension of the ITC

More Information: Solar tax credit – everything you need to know about the federal ITC for 2020. (January 2020). [via **ENERGYSAGE**]

Economics

U.S. Solar Installed Costs

Levelized Costs

Lazard. (2018). Levelized Cost of Energy and Levelized Cost of Storage 2018 [lazard.com]

Data Source: MIT Future of Solar Energy Study

Annual U.S. Solar PV Installations

COVID Impacts

SEIA. (2019). Solar Market Insight Report 2019 Year In Review. [SEIA]

Maryland Annual Solar Installations

SEIA Project Location Map

SEIA. (2020). Maryland Solar [via <u>SEIA]</u>

Cumulative U.S. Solar Installation by State

< 50 MW </p>

State	MW Installed	# Installations	Solar Jobs
California	28,471.51	1,173,243	74,255
North Carolina	6,451.05	17,788	6,617
Arizona	4,765.73	164,236	7,777
Florida	5,577.67	66,466	12,202
Texas	5,577.44	76,584	10,261
Nevada	3,612.85	58,026	7,000
New Jersey	3,386.41	125,587	6,225
Massachusetts	2,849.47	106,772	10,400
Georgia	2,664.39	2,039	4,798
New York	2,401.95	133,204	10,740
Utah	1,799.20	41,001	7,107
Colorado	1,513.95	71,257	7,174
Minnesota	1,462.89	7,482	4,335
South Carolina	1,477.10	21,233	3,307
Hawaii	1,361.94	88,641	2,484
Maryland	1,263.37	70,378	4,854
Virginia	1,099.65	12,586	4,489
New Mexico	1,068.33	24,380	2,021
Oregon	880.94	20,928	3,750
Connecticut	786.02	47,535	2,234
Idaho	559.97	7,074	512
Pennsylvania	550.45	32,260	4,231

SEIA. (2020). Solar Industry Research Data [via SEIA]

Total Solar Installed	National Ranking	Solar Jobs	Growth Projection
1,263.37 MW	16 th	4,854	1,172.78 MW
193.74 MW in 2019	Ranks 15 th in 2019	Ranks 14 th in 2019	Ranks 25 th

There are 233 solar companies operating in Maryland

17 Manufacturers

123 Installers/ Developers

SEIA. (2020). Maryland Solar [via <u>SEIA</u>]

SESSION TOPICS

Energy Sources

Solar Market

Farm Applications

- Implementation Options
- Off-Grid vs Grid-Tied
- Farmer Motivations
- Solar Pros and Cons
- Utility-Scale Considerations

PV Implementation

Structural Addition

- Retrofitting onto existing building
- Provides electricity
- Reduces utility-load

Building Integrated PV (BIPV)

- Integrated into new construction
- Multi-functional energy improvements
- Aesthetics

Ground-Mounted

- Permits tracking
- Requires fencing, buffers, construction
- Supports large utility-scale installations

Micro Solar

- Battery charging
- Portable & lightweight
- Mono/Multi Crystalline Silicon

Mobile Solar

- Battery-integrated
- Portable & deployable
- No diesel fuel to replenish

Pole-Mounted

- Uses batteries & energizers
- Remote or large fencing systems
- Electric fencing, lighting, water pump

Differences

Access to Electricity

- Off-Grid: Sunshine + Battery (no excess)
- Grid-Tied: Sunshine + Grid

Excess Production

- Off-Grid: Energy Usage + Battery
- Grid-Tied: Energy Usage + Grid

Power Outages

- Off-Grid: Independent from Utility Disruptions
- Grid-Tied: No Power with Utility Disruptions

Electricity Bills

- Off-Grid: No Bills (system investment)
- Grid-Tied: Service Fees, Delivery & Demand Charges

Motivations

Investment

- Lower Electric Bills
- Ensure Good ROI

Marketing

- Environmentally-Friendly
- Agritourism

Backup Power

- Independent from Grid Disruptions
- Productivity & Resiliency

Environmental Goals

- Improve Carbon Footprint
- No Emissions

pros

Reduces an Expense

• Reduce your electric bill & control the fixed cost

Protection from Rising Electric Rates

• Reduces volatility of future energy costs & free fuel

Quickly Recover Installation Cost

• Tax credit, 100% accelerated depreciation, grants

Grow your Bottom Line

• No material or labor costs impacting savings

Sustainability

• Environmentally clean and economically sustainable

Set & Forget

• Minimal maintenance & upkeep, 25-30 year warranty

cons

Grid Dependence

• Disruptions in electric grid will stop grid-tied solar

Requires Open Space

• Roof space or cleared terrain

High Upfront Costs

• High investment with upfront capital or financing

Requires Adequate Sunshine

• Impacts from shade impact, tilt, orientation

Low Curb Appeal

Can be unattractive

utility-scale concerns

Takes up too much farmland

- less than residential or retail development?
- 80,000 acres to generate 10% of MD's electricity

PV projects damage farmland

- decommissioning & end-of-life restoration
- or permanent loss to commercial/residential

Hurts agricultural industry

- leasing land can keep farms in business
- landowners may earn thousands each year

Lifespan of system is too short

- lifespan & warranties for 25-30 years
- efficient operation at 30-40 years

Environmental & Wildlife Impacts

- review, planning, & permitting requirements
- siting rules & ordinances

Panels are not environmentally-friendly

- minimal emissions, noise, & glare
- can be recycled or landfilled

Images & Videos

- Alesandro Volta Monument: by Fritz the Cat [*public domain*] via <u>Pixabay</u>
- Albert Einstein: by Ferdinand Schmutzer
 [*public domain*] via Wikimedia Commons
- BAPV Solar Façade: by Hanjin
 [public domain] via Wikimedia Commons
- Barn with Solar & Biomass: by Antranias
 [*public domain*] via <u>Pixabay</u>
- Calculator: by Charles Deluvio
 [*public domain*] via <u>Unsplash</u>
- Calvin Souther Fuller: by AT&T Archives [public domain] via Wikimedia Commons
- Coal: by Ben Scherjon
 [*public domain*] via <u>Pixabay</u>
- Elementary Generator: by FAA
 [*public domain*] via Wikimedia Commons
- EM Spectrum with wavelengths: by NASA [*public domain*] via Imagine the Universe
- Firewood: by Poukázka Na Palivové Dříví via <u>uokpl</u>
- Flag of Greece [*public domain*] via <u>Wikimedia Commons</u>
- Flag of Honduras: by Armand du Payrat
 [public domain] via Wikimedia Commons
- Flag of Italy [*public domain*] via Wikimedia Commons

- Flag of the United States
 [public domain] via Wikimedia Commons
- Geyser: by Peter Gonzalez
 [*public domain*] via <u>Unsplash</u>
- Greenhouse Gas Reduction Plan via <u>Vangel</u>
- How Net Metering Works: by Goldin Solar via <u>Goldin Solar</u>
- Mobile, Solar Pump: by Headwaters SWCD via <u>Headwaters SWCD</u>
- Nuclear Powerplant: by Frédéric Paulussen
 [public domain] via Unsplash
- Off Grid vs On Grid Solar: by Sara Gambone via Paradise Energy Solutions
- Pole-Mounted Energizer: by Jeffrey R. Yago via Mother Earth News
- PURPA Compliance : by John Locke Foundation via John Locke Foundation
- RGGI 101: Enerknol Research via <u>EnerKnol</u>
- Skydiving: by Kamil Pietrzak [*public domain*] via <u>Unsplash</u>
- Solar on Commercial Roof: by Angie Warren
 [*public domain*] via <u>Unsplash</u>
- Solar One: by University of Delaware via <u>Udaily</u>

- Solar Panels in Field: by American Public Power Association [*public domain*] via <u>Unsplash</u>
- Solar Panels on Brick Home: by Vivint Solar [*public domain*] via <u>Unsplash</u>
- Solar Panels on Farm: by Andreas Gücklhorn
 [public domain] via Unsplash
- Solar Phone Charger: by Energypeg
 [public domain] via Wikimedia Commons
- Solar Thermal System: by Laura Ockel [public domain] via <u>Unsplash</u>
- Spectrum of Solar Radiation: by Nick
 [public domain] via Wikimedia Commons
- Steam Turbine Illustration: modified from Mikhail Ryazanov [*public domain*] via Wikimedia Commons
- Turbine Blades: by Nabonaco
 [public domain] via Wikimedia Commons
- Vanguard 1: by NASA [*public domain*] via Wikimedia Commons
- Water Turbine Illustration: by Mikhail Ryazanov [*public domain*] via Wikimedia Commons
- Wind Turbines: by MH [*public domain*] via <u>Unsplash</u>
- Wood Stove: by HearthStone via <u>heartstone</u>
- Woody Biomass: by Recyclind [public domain] via Pixabay

ON-FARM SOLAR PV TRAINING WEBINAR SERIES

WEBINAR SCHEDULE

Module #2: Solar PV Basics OCT 7, 2020 1:00 PM - 2:00 P.M. (EST)

Module #3: Solar Planning & Design OCT 14, 2020 1:00 PM - 2:00 P.M. (EST)

Module #4: Solar Regulations & Zoning OCT 21, 2020 1:00 PM – 2:00 P.M. (EST)

Module #5: Installation & Maintenance OCT 28, 2020 1:00 PM – 2:00 P.M. (EST)

Module #6: Financial Options NOV 4, 2020 1:00 PM – 2:00 P.M. (EST)

Module #7: Community Solar & Co-ops NOV 11, 2020 1:00 PM - 2:00 P.M. (EST)

Module #8: Utility-Scale Leasing NOV 18, 2020 1:00 PM – 2:00 P.M. (EST)

extension.umd.edu/energy

Drew Schiavone dschiavo@umd.edu (301) 432-2767 ext. 342