# Fly Management Best Practices Do not duplicate without written permission.

## Cassie Krejci, Ph.D. Cassie.Krejci@mgk.com



# **TODAY'S GOALS**







FLY BIOLOGY



\*ASSUMES OPTIMAL CONDITIONS\*



## **Filth Fly Identification**

| House Fry  | 6-9 mm<br>LONG  | Color: grey and black, 4 black stripes<br>on thorax. Non-biting, sponging<br>mouthparts.                           | • | Animal waste<br>Animal areas<br>High moisture                                    |
|------------|-----------------|--------------------------------------------------------------------------------------------------------------------|---|----------------------------------------------------------------------------------|
| Stable Fly | 5-7 mm<br>LONG  | Color: brownish-grey, green-yellow<br>sheen, 7 black spots on abdomen.<br>Biting (piercing-sucking)<br>mouthparts. | • | Moist litter piles & row crops                                                   |
| BLOW FLY   | 8-10 mm<br>LONG | Color: metallic blue or green, sponging<br>mouthparts                                                              | • | Maggots live in<br>decaying tissue.<br>Near animal refuge                        |
| FRUIT FLY  | 2-3 mm<br>LONG  | Color: yellow-brown with brick-red eyes, rings across abdomen.                                                     | • | Moisture<br>Fermentation, ripe /<br>rotting / decaying fruit<br>/ organic matter |





# THE IMPORTANCE OF FLY CONTROL

- Flies are a health risk & are mechanical vectors of disease-causing pathogens.
- In U.S. livestock & poultry production, flies are responsible for damage in excess of a billion dollars per year.
- The economic damage level has never been set.
- Flies are an overall nuisance, reducing bird and worker efficiency.







# FLY MANAGEMENT BEST PRACTICES

#### **Inspection & Monitoring**

- Remove conducive conditions
- Look for moisture issues
- Fans
- Mowing



# FLY MANAGEMENT BEST PRACTICES

### More difficult for outdoor areas

- Fans
- Screens (0.88mm 1.22 mm)
- Traps



# FLY MANAGEMENT BEST PRACTICES

#### The most important part!

- Reduce feed & water sources
- Reduce breeding sites
- Bury mortality

Biological Control

# FLY MANAGEMENT BEST PRACTICES









# What is an insecticide class?

- Based on Mode of Action
  - Mechanism or response to a pesticide that results in a toxic action in an organism
  - Act on the Nervous System
- Adulticides v. Insect Growth Regulators (IGRs)
- 29 classes
  - 4 adulticides
  - 3 (IGRs)







## **Chemical Classes**

#### Pyrethroids and Pyrethrins (3A)

Prallethrin Permethrin Cyfluthrin Lambda-cyhalothrin Zeta-cypermethrin Pyrethrins Esfenvalerate

**Organophosphates (1B)** 

**Dichlorvos** 

Chlorpyrifos

**Tetrachlorvinphos** 

Neonicotinoids (4A) Clothianidin Dinotefuran Imidacloprid Thiamethoxam

Spinosyns (5)

**Spinosad** 



## Pyrethrins vs. Pyrethroids: What's the difference?

Natural py

Pyrethrum

Pyrethrins

**Pyrethroids** 

Do not duplicate without written permission.

Permethrin



# **Pyrethrins vs. Pyrethroids**

- **Pyrethrum** total extract from chrysanthemum flowers
- Pyrethrins the 6 esters (molecules) that act as the killing agent in the extract
- Pyrethroids synthetic compounds composed to mimic effects of pyrethrins







## Pyrethrins vs. Pyrethroids: What's the difference?

## Pyrethrum

## **Pyrethroids**



# Insecticides

- Dipteran Molting Disruptors

   Cyromazine
- Juvenile Hormone Analogs
  - Methoprene (7A)
  - Pyriproxyfen (7C)
- Chitin Synthesis Inhibitors
  - Novaluron

Do not duplicate without written permission.

## **Insect Growth Regulators**





## **Product Rotation & Combating Resistance**

H2



- Genetic ability of an organism to tolerate the poisonous effects of a toxicant
  - Inheritable
- Types:
  - Cuticular
  - Target-site
  - Metabolic
  - Behavioral

insecticide

H2

H2



enzyme

#### Insecticides

# Product Rotation & Combating Resistance

#### What is Resistance?



- Genetic ability of an organism to tolerate the poisonous effects of a toxicant
  - Inheritable
- Types:
  - Cuticular
  - Target-site
  - Metabolic
  - Behavioral

## How to avoid resistance?

- Switch between products with different chemical classes in order to prevent resistance
  - At least once a year
- Whole-facility treatments
- Utilizing PBO





# FLY MANAGEMENT PROGRAM EXAMPLE

- 1. Cultural Control & Sanitation
- 2. Premise Applications
- 3. Over-animal applications
- 4. IGRs
- 5. Baits
- 6. RTUs

Do not duplicate without written permission.

## **Tips for Success**

- Keep Rotating Insecticides
- Add an IGR & Synergize
- Water Quality
- Keep litter & compost dry, remove as much litter as possible





# **PREMISE APPLICATIONS**







# **OVER-ANIMAL APPLICATIONS**

Oil-based Vs. Water-based











# **FLY BAITS**

| Class          | Bait           | Actives               | Mft.    | Attractant                       | Benefits                       |
|----------------|----------------|-----------------------|---------|----------------------------------|--------------------------------|
| Diamides       | Cyanarox®      | Cyantraniliprole 0.5% | Central | Sucrose (sugar, % trade secret)  | Uncommon MOA                   |
| Carbamatas     | Coldon Malrin® | Methomyl 1%           | Central | (z) - 9-tricosene (sex, 0.05%) + | Encourages both M & F          |
| Carpanates     | Golden Mainn*  |                       |         | Sucrose (sugar 98.9%)            | flies to feed                  |
|                | Maxforce®      | Imidacloprid, 0.5%    | Bayer   | Muscalure (sex, 0.1%)            |                                |
| Neonicatinaida | QuickBayt®     | Imidacloprid, 0.5%    | Bayer   | Proprietary                      | Effective against OP/Carbamate |
| Neonicotinoius |                |                       |         | (z) - 9-tricosene (sex, 0.04%) + | resistant flies                |
|                | QuickStrike®   | Dinotefuran 0.5%      | Central | Sucrose (sugar 99%)              |                                |
| Neopisetineid  | D              | Clothianidin 0.5%     | MCK     | Proprietary                      | Dual MOAs:                     |
| Neonicotinoid  | Decimari®      | Pyrproxyfen 0.05%     | IVIGK   |                                  | Adulticide + IGR               |



# FLY MANAGEMENT PROGRAM EXAMPLE

- 1. Cultural Control & Sanitation
- 2. Premise Applications
- 3. Over-animal applications
- 4. IGRs
- 5. Baits
- 6. RTUs

Do not duplicate without written permission.

## **Tips for Success**

- Keep Rotating Insecticides
- Add an IGR & Synergize
- Water Quality
- Keep litter & compost dry, remove as much litter as possible





# THE IMPORTANCE OF FLY CONTROL

- Flies are a health risk & are mechanical vectors of disease-causing pathogens.
- In U.S. livestock & poultry production, flies are responsible for damage in excess of a billion dollars per year.
- The economic damage level has never been set.
- Flies are an overall nuisance, reducing bird and worker efficiency.



# **THANK YOU!**

Cassie Krejci, PhD Technical Specialist (612)505-9551 cassie.krejci@mgk.com

Braxton Whitaker Account Representative (612)503-6319 Braxton.whitaker@mgk.com

John Whetzel MWI Animal Health (540)335-7962 jwhetzel@mwianimalhealth.com