

Non-nutritive Aspects of Manure Utilization

Winter Webinar #2 - February 13, 2013 Trish Steinhilber Agricultural Nutrient Management Program

Today's Topics

- organic carbon
 - biological, physical and chemical properties
- greenhouse gas production
- disease-prevention or treatment compounds
- residuals from crop protection chemicals used in production of animal feed

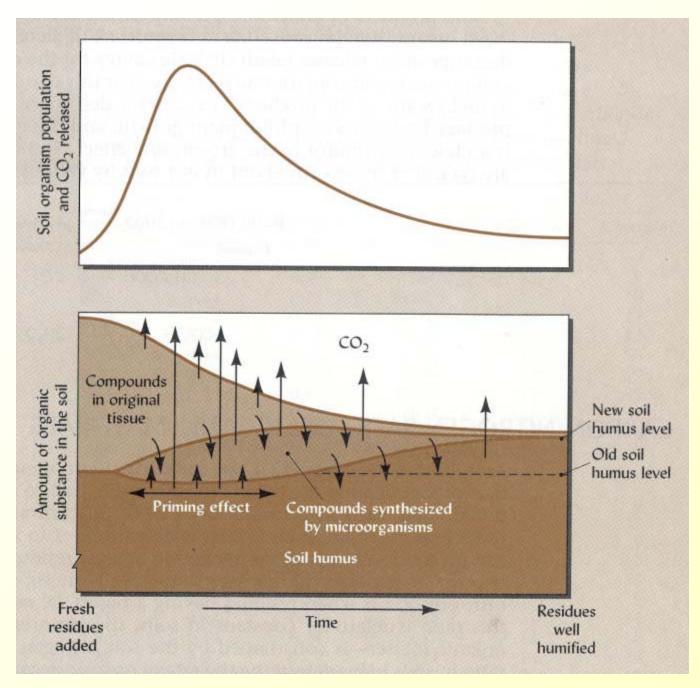
Manure: A Heterogeneous Material

- a mixture of metabolic waste & solid waste from the digestive system
 - metabolic waste is soluble
 - urea (mammals), uric acid (birds), soluble materials
 - feces is a mixed bag
 - undigested feed
 - microbes, including human pathogens
 - cell wall debris from animal gut

 feces or urine can contain growth promoting substances, hormones, chemicals from feed

Organic Carbon (OC)

- organic carbon additions with manure use
 - 2 tons poultry litter provides 3/4 ton OC
 - 20 ton dairy manure provides 3.2 tons OC


 compared to 1.3 tons of OC for corn stover from a 170 bu/C grain crop

Impacts of Organic Carbon Additions

- cascading series of benefits from organic inputs
 - stimulates biological activity
 - feeds the semi-starving microbes
 - crop roots and microbes exude binding agents
 - plant and microbial mucilages
 - increase in large aggregates/improve soil structure
 - decrease in bulk density/increase in pore space
 - increase in infiltration rate and hydraulic conductivity
 - improve soil tilth or soil quality

Microbial Biomass

Alabama, 10 years of poultry litter (PL)

Decatur silt loam

 commercial fertilizer and PL at comparable rates of N, phosphate and potash

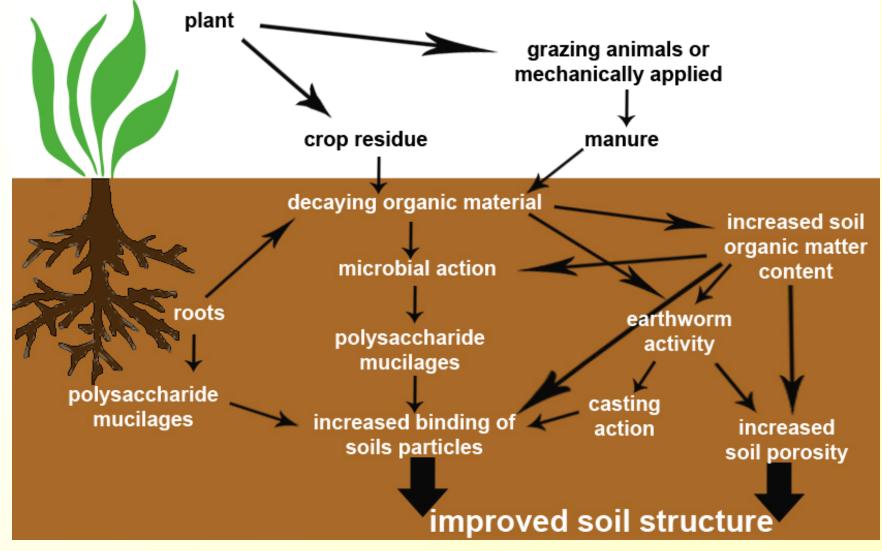
Microbial Biomass N (Particulate Organic N or PON)

	Microbial Biomass N (MBN) (pounds per acre)	PON (T/acre)
commercial fertilizer	(pounds per acre) 176	2.4
poultry litter	231	2.8

PON is a measure of coarse undecomposed organic N and is believed to be a labile pool (0.53mm screen)

Genetic Look at Organisms

- Liu at al. NCSU (2007, SBB)
 - several organic amendments
 - Orangeburg sandy loam
- soils treated with litter and other organic sources had more diversity and richness among microbes
- ability to use a wider array of substrates as energy/food source



Soil Respiration (CO2 Evolution)

N source	CO ₂ evolved	
	(mg CO ₂ /kg soil)	
ammonium nitrate	26	
poultry litter	36	
green manure (V&R)	29	

Equivalent amounts of PAN in commercial fertilizer and organic amendment treatments, NC State, Lui et al., SBB, 2007; average of year 5 & 6 of experiment; amendments in mid-May; tomatoes planted in late May; measurements taken in August

Adapted from Haynes & Naidu, 1998, NCA-E

Aggregate Stability

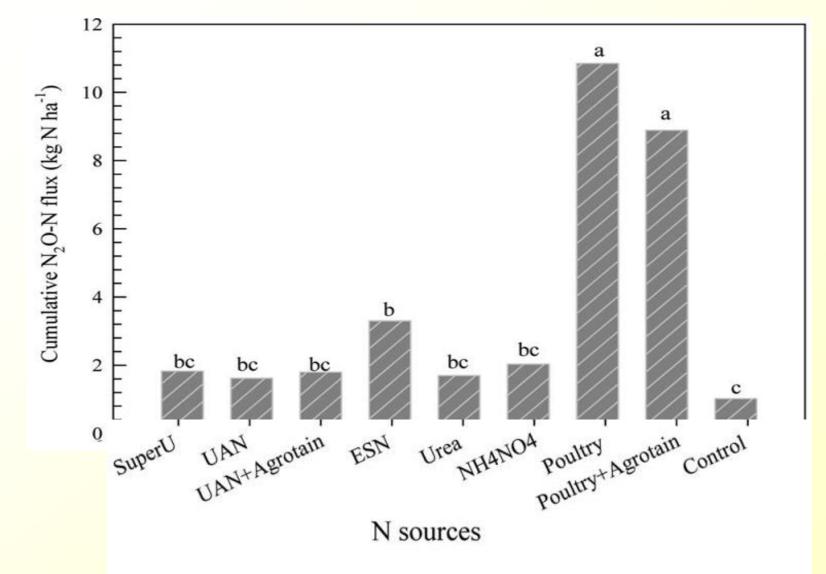
- ability of aggregates to withstand disruption
 - attempt to disrupt aggregates
 - measure quantity of aggregates that are intact
- dairy manure and commercial fertilizer on alfalfa – CMREC Clarksville high manure rate>low manure rate>fertilizer> control

Manure and Greenhouse Gases

- CO₂, CH_{4 (methane)}, N₂O (nitrous oxide)
 CH₄
 - 20 times as potent per molecule as CO₂
 - $-N_2O$
 - is 300 time as potent per molecule as CO₂
 - "laughing gas"

N₂O is a product of denitrification

- occurs under anaerobic conditions
- heterotrophic organisms convert NO₃⁻ to and to N₂O and/or N



Nitrogen Sources and N₂O

- field experiment in Kentucky
- Crider silt loam
- all N sources applied at 150 pound per acre rate
 - urea, ammonium nitrate
 - EEFs & additives
 - poultry litter
- static chambers
- 2-3 times a week extracted gas from chambers

N₂O per unit Grain Yield

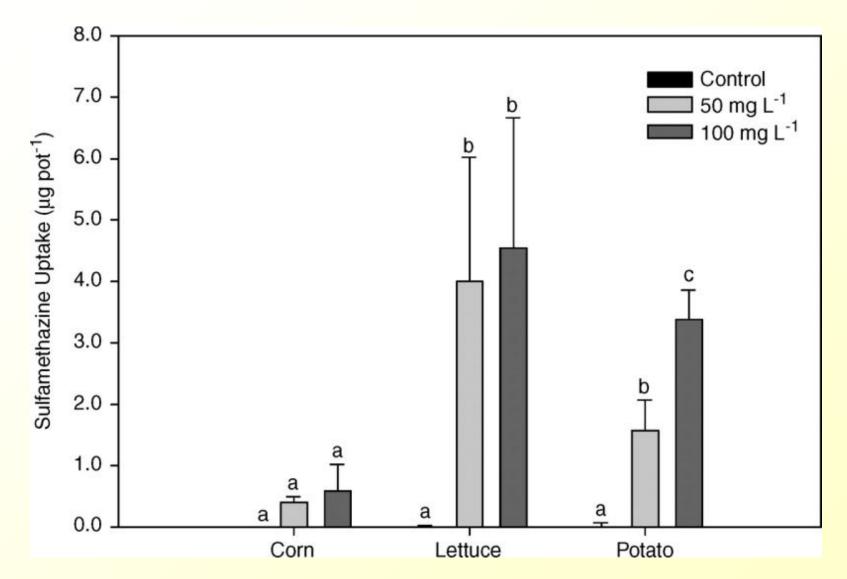
N Source	g N ₂ O-N per bu
Super U	7.0
UAN	6.0
UAN Agrotain Plus	6.9
ESN	12.6
urea	6.2
NH ₄ NO ₃	8.0
poultry litter	41.1*
poultry litter Agrotain Plus	37.4*
control	5.1

No surprises here!

- litter supplied labile C, not just N
- soils went anaerobic during the season
- heterotrophs used the larger labile C supply to denitrify more nitrate
- replicated in many locations over last 15 years
- CH₄ was not impacted by N sources

Veterinary Pharmaceuticals

- antibiotics and ionophores
 - antibiotics usually anti-bacterials
 - some used for both human and veterinary populations
 - ionophores used only for animals
- pass through the animal unmetabolized
- impact soil organisms
- uptake by plants


Veterinary Pharmaceuticals in Animal and Plant Products

- Average Daily Intake (ADI)
- Maximum residue levels

 established for animal products by JECFA
- less than the amount that would trigger allergic reaction in sensitive folks
- amount that could be ingested daily with no lifetime health risks

MN, Kumar and Dolliver, greenhouse, swine manure, sulfamethazine

Sulfamethazine Uptake by Vegetables

- maximum residue level in animal products of 0.1 mg/kg fresh weight
- average of 3 vegetables was 0.05 mg/kg
- ADI_{sulfamethazine} = 5mg/kg of body weight per day
- even with a vegetable-based diet, daily intake would not exceed ADI

Herbicide Carryover

- manure may contain active ingredients from herbicides used for weed control in crops subsequently fed to animals
 - pyridine carboxylic acid family
 - clopyalid, picloram, fluoroxypyr, triclopyr
 - Stinger, Reclaim, Forefront, Milestone
 - broadleaf weed control in pastures, hay fields and golf courses
 - not metabolized by herbivores
 - excreted in manure
 - not readily altered by composting

Pyridine Carboxylic Acid Family

- clippings from treated urban lawn caused severe plant damage to users of yard waste compost in several major cities
- manure from animals fed hay or grazing pastures
- auxin-like chemicals
- severe deformation, stunting or death of plants

Ohio State Extension

Questions or Comments?