Manure Injection in No-till and Forages

Rory Maguire Associate Professor Virginia Tech

Why Inject or Incorporate Manure?

- 1. Reduce odors, becoming more important with urban sprawl
- 2. Agronomic Improve N use efficiency by decreasing ammonia volatilization, but economic importance depends on N prices
- 3. Environmental Possibly decrease N and P losses in runoff

A BMP that is cost effective?

Why not just till after manure application?

Benefits of No-Till

- 1. Reduced time and energy inputs
- 2. Buildup soil organic matter
- 3. Improved soil tilth (structure, drainage)
- 4. Reduced soil erosion

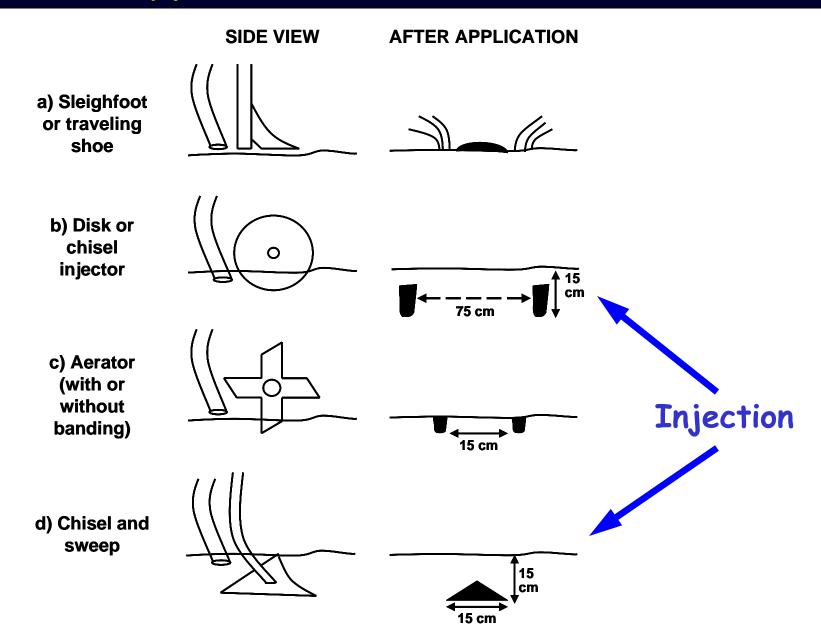
Benefits of No-Till (Better Soils with the No-Till System, Penn State Univ)

Types of Tools Available

- 1. Shallow incorporation after surface application, large range in soil disturbance
- 2. Injection of liquid and dry manures using chisels, knifes, coulters
- Aeration helps increase infiltration, sometimes includes aspects of incorporation (e.g. AerWay set at an angle)

We know how nutrients move: Runoff versus Leaching

N Movement


P Movement

Nitrate Leaches!!

P Leaches Slowly

Types of tool available

Dairy Manure Plant Available Nitrogen (Ibs/1000 gal)							
Total N 19.22 - 8.88NH ₄ = 10.34 Org N							
	Surface	Injected					
Organic	(35%)	(35%)					
	3.62	3.62					
Ammonia	(25%)	(95%)					
	2.22	8.44					
Total PAN	~6	12					

Value of Plant Available Nitrogen

Increased Value due to Injection = ~ 6 lb PAN/1000 gal

@ 70 \$/lb, added value = \$4.20 / 1000 gal

Increased Nitrogen Value 500,000 gal = \$2,100

Drawbacks to manure Injection

1. Slower, therefore takes more time

- 2. Equipment costs more to buy and maintain, can the increased nitrogen use efficiency cover the cost?
 - Retro fit an existing tanker with toolbar, hydraulic shredder, distributor with hoses, 6 x Yetter Avenger Injection units = \$17,134
 - Use nurse trucks

Manure injection costs (6000 gal/acre on 80 acres)

Туре	Ac./hr.	Equipment cost/hr.	\$/ac.	*N recovery w/ injection	Cost/a c. less N	Net injection cost/ac.
Broadcast	3.3	\$105	\$32	\$0	\$32	
Injection w/o nursing	2.6	\$150	\$58	\$35	\$23	(\$9)
Injection w/ nursing	3.3	\$255	\$77	\$35	\$42	\$10

*N recovered amount 50 lb/acre and valued at \$.70/lb.

Farmer Manure Injection Experience

- 1. More uniform/ consistent looking corn
- 2. Minimal problems with rocks
- 3. Pivoting tool bar and chopper helped
- 4. Nursing only effective over larger distances
- 5. Odor dramatically reduced
- 6. Little striping seen still need starter nitrogen

Farmer Manure Injection Experience

- 1. Roots proliferated in injection slits
- 2. NRCS cost share available
- 3. Due to flow meter, realized 5000 gal tank had significant foam
- 4. Need more yield data. Can the extra N from injection remove the need to side-dress?
- 5. Lower nutrient runoff

Increased Carbon Capture?

- Feasible it can be done in local soils
- Close to break even before NRCS cost share, if you count value from nitrogen
- Odor reduction may open more areas
- Farmer research continuing
- Can the extra N from injecting replace the need for side-dress N?

Nurse truck

In-field Manure storage container

Dragline system (Mid-Atlantic Ag, PA)

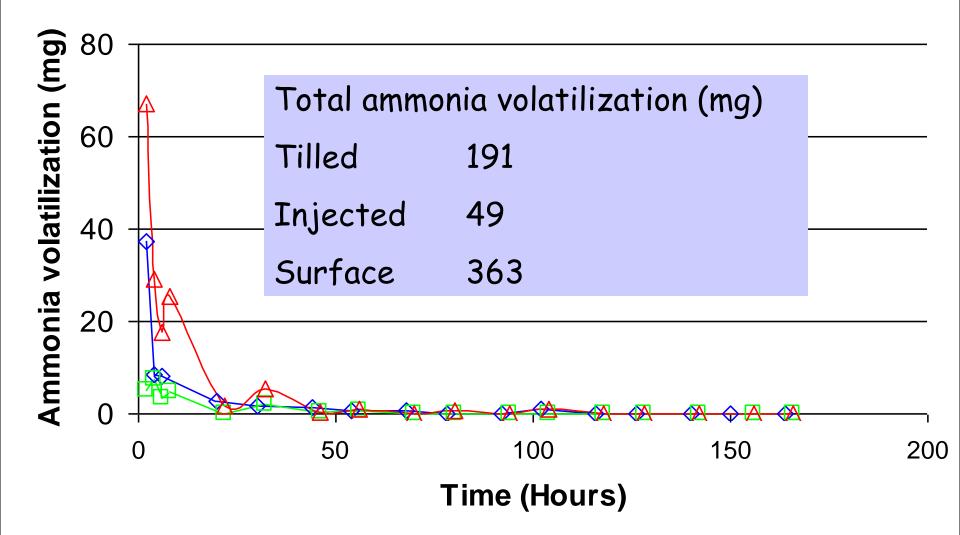
Dragline system (Mid-Atlantic Ag, PA)

Dragline system (Idaho)

Angle on entry determines the level of disturbance (Basden, 2008)

0° roller angle 5° roller angle

10° roller angle



Virginia Research Results

Ammonia Volatilization

Ammonia volatilization

From Literature Review

- Ammonia volatilization no doubts about benefits with incorporation and injection. Aeration questionable
- 2. Infiltration Few studies, but even aeration not consistent

3. Sediment - injection maybe neutral, aeration depends on soil disturbance, not enough data on incorporation but probably increases sediment losses.

From Literature Review

- 4. Phosphorus: Injection and incorporation decreased Total P and soluble P losses, aeration questionable
- 5. Nitrogen runoff: Injection and incorporation decreased N loss, aeration questionable
- 6. Nitrogen leaching: One study
- 7. Yields: If you prevent NH₃ loss, you can increase yield if N is limiting

Knowledge Gaps

What type of injection works 'best' and how site characteristics affect this? How do you calculate PAN for each method – ammonia vs organic N? Can we predict when aeration works? How can we encourage adoption by farmers?

 What are the trade-offs between nutrient management and no-till with these systems

Other Issues

Are technologies compatible with no-till cost share? Depends

- ✓ Pathogens ?!
- Hormones and antibiotics?

Results of Poultry Litter Injection in the Shenandoah Valley

Stephanie Kulesza, Rory Maguire

Poultry Litter Injector

Poultry Litter Injector

Poultry Litter Injector

Litter Injector Issues

- Works in small doses, but:
 - Hydraulics overheat for large acreages
 - Can't cope with wet litter
 - Only half a load at a time

 Currently under engineered, but being reworked. So following results are proof of concept

- Determine the effects of injection and surface application of poultry litter on:
 - Ammonia volatilization
 - Soil inorganic nitrogen
 - Hay yield and quality

Litter Injection Conclusions

- Injection increased total inorganic N in the soil incubation and field studies
- Injection decreased ammonia volatilization to levels of the control
- Injection did not significantly increase yields in orchardgrass hay
- Injection increased protein in orchardgrass hay
- With increased N availability, injection could be a valuable alternative to traditional surface application of poultry litter (if equipment worked)

