

P-3

PHOSPHORUS SITE INDEX

Introduction

Phosphorus (P) is an essential nutrient required for healthy plant growth and crop production. However, too much P can be transported to water bodies and may lead to environmental problems such as eutrophication. Eutrophication is a process in which significant amounts of nutrients in a water body, such as the Chesapeake Bay, stimulate excessive algae growth. When these algae die, their decomposition depletes the water of dissolved oxygen, causing other aquatic life such as fish and oysters to die.

Phosphorus from cropland becomes an environmental problem when two conditions exist (see Figure 1 below):

- 1. a large source of P is present in the soil or in nutrient-bearing material applied to the soil surface and
- 2. a pathway exists to transport P from the soil to surface water through processes such as erosion, runoff, and/or leaching.

Modified from Sharpley & Gburek, USDA-ARS (used with permission)

Figure 1. Various sources and transport pathways of phosphorus

An area where these two conditions exist simultaneously is known as the critical source area (see Figure 2 below).

Used with permission from Andrew Sharpley, USDA-ARS

Figure 2. Critical source area concept

The Phosphorus Site Index (PSI) is a tool that can be used to help identify critical source areas on a farm. During the process, this tool will determine the level of P movement from the site and provide recommendations on management implications to minimize the risk of phosphorus losses. The PSI is broken into two parts:

- Part A Site and Transport Characteristics
- Part B Source and Management Characteristics

Part A – Site
and TransportPart A of the PSI evaluates the phosphorus loss potential due to six site and transport
characteristics.CharacteristicsTable 1 on page 3 presents the six site and transport characteristics the information

Table 1 on page 3 presents the six site and transport characteristics, the information needed to determine a value for those characteristics and how that value is represented.

Site/Transport Characteristics	Information Needed	Represented As
soil erosion	 precipitation percent slope and slope length crop rotation conservation practices soil conditions 	a value calculated using the Revised Universal Soil Loss Equation (RUSLE)
soil runoff class	 percent slope soil permeability class	a value from $0 - 8^*$
subsurface drainage	 depth to seasonal high water table soil drainage class	a value from 0 – 8*
leaching potential	 depth to seasonal high water table Maryland NRCS leaching value	a value from $0 - 4^*$
priority of receiving water	• determined by the category in which the watershed is listed as determined in the Maryland Clean Water Action Plan	a value from 0 – 4*
distance from edge of field to surface water	 vegetated buffer width distance from the edge of the cropping area to surface water 	a value from 0 – 8*

Table 1. Site and transport characteristics

* These values can be found using look-up tables in SFM-7, The Maryland Phosphorus Site Index Technical Users Guide.

Calculating Follow the steps in Table 2 below to calculate Part A of the PSI.

Part A

Table 2. Calculating the Total Site and Transport Value

Step	Action
1	Add together all six numerical values from Part A.
2	Multiply the sum of the six values by a scaling factor of 0.02. <i>Result:</i> This number equals the Total Site and Transport Value.

Part B –Part B of the PSI evaluates the phosphorus loss potential due to five farm managementManagementpractices and P source characteristics.and SourceTable 3 below presents the five management and source characteristics, the information
needed to determine a value for those characteristics and how that value is represented.

Management and Source **Information Needed Represented As...** Characteristics • the soil test P level which has been a calculated value converted to the University of obtained by multiplysoil test P level Maryland's Fertility Index Value ing the FIV-P number by a factor of 0.2 (FIV) a calculated value obtained by multiply-P fertilizer planned P fertilizer application rate • ing the P fertilizer (expressed as lbs P₂O₅/acre) application rate application rate by a factor of 0.6 P fertilizer application method used (e.g., • application a value from $0 - 60^*$ banded, injected, surface applied) method and timing of application • timing a calculated value obtained by multiplyplanned rate of P application from • organic P ing the organic source manure or other organic sources P application rate by application rate (expressed as lbs P₂O₅/acre) the Phosphorus Source Coefficient (PSC) organic P • application method used (e.g., application a value from $0 - 60^*$ injected, surface applied) method and timing of application • timing

 Table 3. Management and source characteristics

* These values can be found using look-up tables in SFM-7, The Maryland Phosphorus Site Index Technical Users Guide.

Calculating	Follow the step in Table 4 below to calculate Part B of the PSI.
Part B	

Table 4. Calculating the Total Management and Source Value

Step	Action
	Add together all five numerical values from Part B.
1	<i>Result:</i> This number equals the Total Management and Source Value.

Tying It All	The P Loss Rating indicates the potential risk of phosphorus movement from a particular
Together –	field.
Calculating the	
P Loss Rating	Follow the step in Table 5 below to calculate the P Loss Rating.

Table 5. Calculating the P Loss Rating

Step	Action
1	Multiply the Total Site and Transport Value (from Part A) by the Total Management and Source Value (from Part B).
	<i>Result:</i> This number equals the P Loss Rating. (It does not represent actual pounds of P loss.)

Interpreting the
P Loss RatingThe P Loss Rating indicates if the field in question is a critical source area. The P Loss
Rating falls into one of four interpretive categories: LOW, MEDIUM, HIGH and VERY
HIGH.

Table 6 on page 6 presents the four ranges of P Loss Ratings, the interpretive category for each range and the management implications for each range.

Table 6.	Interpreting	the P I	Loss Rating

P Loss Rating	Category	Management Implication	
0 – 50	LOW potential for P movement from this site given current management practices and site characteristics.	 N-based nutrient recommendations are acceptable for this site. Soil P levels and P loss potential may increase in the future due to continued N-based recommendations. 	
51 – 75	MEDIUM potential for P movement from this site given current management practices and site characteristics.	 N-based nutrient recommendations 1 year in 3. P-based nutrient recommendations 2 years in 3. P applications limited to amount expected to be removed from field by crop harvest or soil test-based P application recommendations, whichever is greater. 	
76 – 100	HIGH potential for P movement from this site given current management practices and site characteristics.	 P-based nutrient recommendations for this site. P applications limited to amount expected to be removed from field by crop harvest or soil test-based P application recommendations. All BMPs for reducing P losses by erosion, runoff or leaching should be implemented. 	
> 100	VERY HIGH potential for P movement from this site given current management practices and site characteristics.	 No P should be applied to this site. Active remediation techniques should be implemented in an effort to reduce the P loss potential from this site. 	

PSI Scenarios The following scenarios are based on actual data from fields with a LOW, MEDIUM, HIGH and VERY HIGH Phosphorus Site Index.

Scenario 1: LOW PSI field

Part A (Site and Transport Characteristics)

		Value
location	Piedmont Plateau	
soil mapping unit	Combs fine sandy loam	
crop	no-till corn silage	
conservation practices	contour planting	
slope	gently sloping (2%)	
soil loss (tons/acre/year)	1	2
runoff class	low	2
subsurface drainage	low	2
leaching potential	low	0
distance to water / buffer	<100ft / >50ft	2
priority of receiving water	Antietam Creek Watershed	2
Sum of Site and Transport Characteristics		10
	Scaling factor	0.02
r	Fotal Site and Transport Value	0.20

Part B ((Management and	Source	Characteristics)
			,

		Value
FIV-P	275	55
P fertilizer application rate	0	0
P fertilizer application method	0	0
organic P application rate	210	126
organic P application method	surface applied in March	45

Total Management and Source Value2

226

P Loss Rating

45

Interpretation: Very favorable soil characteristics (low runoff class, low leaching potential and low subsurface drainage) and low soil erosion counteract the effects of a high soil test value and manure left on the surface.

Scenario 2: MEDIUM PSI field

Part A (Site and Transport Characteristics)

		Value
location	Eastern Shore	
soil mapping unit	Muck	
crop	corn-bean rotation, moldboard plowed	
conservation practices	none	
slope	gently sloping (1%)	
soil loss (tons/acre/year)	0.65	1.3
runoff class	low	2
subsurface drainage	high	6
leaching potential	medium	2
distance to water / buffer	<100ft / <25ft; >25ft No P application zone	6
priority of receiving water Dividing Creek Watershed		1
Sum of Site and Transport Characteristics		18.3
	Scaling factor	0.02
r	Fotal Site and Transport Value	0.37

Part B (Management and Source Characteristics)

		Value
FIV-P	372	74
P fertilizer application rate	0	0
P fertilizer application method	0	0
organic P application rate	135	81
organic P application method	incorporated more than 5 days after application	45

Total Management and Source Value 200

P Loss Rating 74

Interpretation: A high soil test value and delay in incorporation of manure lead to a MEDIUM P Loss Rating.

Scenario 3: HIGH PSI field

Part A (Site and Transport Characteristics)

		Value
location	Southern Maryland	
soil mapping unit	Caroline silt loam	
crop	vegetable with rye cover crop	
conservation practices	none	
slope	5%	
soil loss (tons/acre/year)	24	48
runoff class	low	2
subsurface drainage	medium	4
leaching potential	low	0
distance to water / buffer	>100ft	0
priority of receiving water	Breton Bay Watershed	4
Sum of Site and Transport Characteristics		58
	Scaling factor	0.02
r	Fotal Site and Transport Value	1.16

Part B (Management and Source Characteristics)

		Value
FIV-P	171	34
P fertilizer application rate	20	12
P fertilizer application method	starter	30
organic P application rate	0	0
organic P application method	0	0

Total Management and Source Value

76

P Loss Rating 88

Interpretation: When the Total Site and Transport Value is so high, in this case due to excessive soil loss, the P Loss Rating will be negatively impacted even when the Total Management and Source Value is modest.

Scenario 4: VERY HIGH PSI field

Part A (Site and Transport Characteristics)

		Value
location	Eastern Shore	
soil mapping unit	Fallsington sandy loam	
crop	no-till corn with cover crop	
conservation practices	none	
slope	very gently sloping (0.5%)	
soil loss (tons/acre/year)	0.1	0.20
runoff class	negligible	0
subsurface drainage	very high	8
leaching potential	high	4
distance to water / buffer	<100ft / none	8
priority of receiving water	Nanticoke River Watershed	2
Sum of Site and Transport Characteristics		22.2
	Scaling factor	0.02
r	Fotal Site and Transport Value	0.44

Part B (Management and Source Characteristics)

		Value
FIV-P	1132	226
P fertilizer application rate	0	0
P fertilizer application method	0	0
organic P application rate	70	42
organic P application method	surface applied March	45

Total Management and Source Value

313

P Loss Rating

138

Interpretation: When soil test levels are extremely high, the P Loss Rating will be negatively impacted.

References	Coale, F. 2005. <i>The Maryland Phosphorus Site Index Technical Users Guide</i> . SFM-7. University of Maryland, Department of Natural Resource Sciences and Landscape Architecture, College Park, MD, 20742.
	Sharpley, A. N., T. Daniels, T. Sims, J. Lemunyon, R. Stevens and R. Perry. 1999. <i>Agricultural Phosphorus and Eutrophication</i> . ARS-149. US Department of Agriculture, Agricultural Research Service, Beltsville, MD, 20705.
Prepared By	Patricia Steinhilber
	Program Coordinator
	Agricultural Nutrient Management Program
	Department of Environmental Science and Technology
	Jennifer Salak
	Communications Coordinator
	Agricultural Nutrient Management Program
	Department of Environmental Science and Technology
Review Team	Heather Hutchinson
	Nutrient Management Specialist
	Agricultural Nutrient Management Program
	Department of Environmental Science and Technology
	Richard Weismiller
	Professor Emeritus
	College of Agriculture and Natural Resources
	Lief Eriksen, Robert Bricker and Richard Nottingham
	A oricultural Nutrient Management Program
	Department of Environmental Science and Technology

Cooperating	University of Maryland College of Agriculture and Natural Resources
Agencies'	Agricultural Nutrient Management Program
Contact	Department of Environmental Science and Technology
Information	0116 Symons Hall
	College Park, MD 20742
	(301) 405-1319
	www.anmp.umd.edu

Maryland Department of Agriculture Nutrient Management Program 50 Harry S Truman Parkway Annapolis, MD 21401 (410) 841-5959 www.mda.state.md.us

Revised October 2010 1st printing – July 2006

P-3 in the Soil Fertility Guide series.

The *Soil Fertility Guide* series is written and produced by the University of Maryland College of Agriculture and Natural Resources and funded by the Maryland Department of Agriculture.