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Soil health is globally defined by the USDA-NRCS as “the continued 
capacity of soil to function as a vital living ecosystem that sustains plants, 
animals, and humans” (USDA-NRCS, 2019). Operationally, soil health is 

achieved by following the soil health principles of reducing soil disturbance, 
improving biodiversity, maintaining soil cover, and maintaining continuous 
plant growth. A suite of core management practices is promoted by the soil 
health community to help land managers achieve soil health. Core practices 
(hereafter referred to as “soil health practices”) include conservation tillage, 
no-till, cover crops, crop rotation, mulching, nutrient management, and pest 
management (USDA-NRCS, 2019). Implementation of soil health practices 
over the long term is expected to improve water quality, as well as conserve 
water, improve air quality, and save renewable resources (USDA-NRCS, 2019).

Some researchers have suggested that soil health practices can result in 
benefits to the landowner, through reduced fertilizer and pesticide inputs, 
increased crop yields, improved nutrient cycling, and reduced nutrient and 
sediment losses (Snapp et al., 2005; González-Chávez et al., 2010; van Kessel 
et al., 2013; Kuhn et al., 2016). As interest in soil health has grown in recent 
years, a group of researchers organized a symposium titled “Exploring Soil 
Health and Phosphorus Connections” as part of the 2018 American Society of 
Agronomy and Crop Science Society of America Meetings in Baltimore, MD, 
on 7 Nov. 2018 to express concerns about claims that soil health management 
can improve water quality by reducing phosphorus (P) losses from agriculture 
(Smith et al., 2018).

It is well established that eutrophication and harmful algal blooms result-
ing from agricultural P losses (as particulate or dissolved P in runoff or leach-
ate) negatively affect drinking water, fisheries, recreation, and ecosystem health 
(Sharpley et al., 1994; Correll, 1998). Scientists recommend a variety of best 
management practices (BMPs) to reduce the potential for agricultural P losses 
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management decisions.
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Core Ideas

•	 Trade-offs exist in nutrient losses for soil health 
management.

•	 Combining soil health practices and other 
BMPs can exacerbate or mitigate P losses.

•	 There are limitations of soil health practices 
and reducing P losses.

•	 Educators should discuss BMP trade-offs 
associated with P loss.

Abbreviations: BMPs, best management practices; DRP, dissolved reactive phosphorus; LEB, 
Lake Erie basin; MB-P, microbial biomass phosphorus.
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(Sharpley et al., 1994). Yet broad assertions that adopting 
BMPs associated with soil health, particularly conserva-
tion tillage and cover crops, will reduce P losses ignore the 
nutrient loss trade-offs that are associated with these specific 
practices (Jarvie et al., 2017). Examples of nutrient trade-
offs include tillage to incorporate urea to decrease ammo-
nia nitrogen losses at the expense of increased particulate 
P losses through soil erosion and decreasing particulate 
P losses with overwintering cover crops at the expense of 
increasing soluble P losses from the frozen vegetation. In this 
commentary, we discuss how application of soil health prac-
tices influence P cycling and loss from agricultural soils. We 
also discuss how combining soil health practices with other 
BMPs (e.g., nutrient placement, drainage management) 
can either exacerbate or mitigate nutrient trade-offs associ-
ated with soil health practices. Overall, we suggest that any 
responsible discussion of soil health practices must include 
potential nutrient trade-offs for landowners and other inter-
ested parties

Soil Health Practices and 
Phosphorus Loss

Government agencies began promoting conservation till-
age (e.g., strip-till, mulch-till, ridge till, no-till) and cover 
crops in recent decades to minimize erosion and improve 
soil health. From a P loss standpoint, these soil health prac-
tices are often effective at reducing sediment delivery and 
the associated particulate P (Butler et al., 2006; Aronsson 
et al., 2016; Uribe et al., 2018). In contrast, the ability of 
conservation tillage and cover crops to reduce dissolved 
P losses in runoff or leaching varies. In a recent literature 
review, Blanco-Canqui (2018) noted that cover crops effec-
tively decreased sediment and N losses but reduced soluble P 
losses in fewer than 25% of studies. In some cases, decreased 
particulate P losses were countered by increased dissolved P 
losses from the same fields. For example, Uribe et al. (2018) 
reported smaller sediment loads from potato (Solanum 
tuberosum L.) fields in Colombia managed under conserva-
tion tillage (0.31 Mg ha-1) compared with intensive tillage 
(0.58 Mg ha-1). However, they reported higher total P loads 
under conservation tillage because soluble P losses increased 
(0.29 vs. 0.21 kg ha-1 for conservation tillage and intensive 
tillage, respectively). While sediment-bound P is also impor-
tant to consider, scientists have linked greater dissolved reac-
tive P (DRP) losses under conservation tillage and cover 
crops to soil P stratification and accumulation (Tiessen et al., 
2010; Dodd and Sharpley, 2015; Smith et al., 2016; Jarvie et 
al., 2017), increased leaching through preferential flow path-
ways and hydraulic connectivity (Pease et al., 2018), and P 
leaching from decaying plant tissues (J. Liu et al., 2014).

Phosphorus accumulation in the top layers of soil (5 cm 
or shallower) is related to surface applications of P (fertilizers 
and manures) and buildup of plant residues under reduced 
tillage systems. Deubel et al. (2011) found elevated concen-
trations of water-soluble P in the surface layer (0- to 5-cm 
soil depth) of German soils following 16 yr of conservation 
tillage (109 mg kg-1 calcium acetate lactate soluble P) com-
pared with conventional tillage (77.9 mg kg-1 calcium acetate 

lactate soluble P). Similarly, Cade-Menun et al. (2015) com-
pared orthophosphate and phytate concentrations in the top 
2.5 cm of soils receiving poultry litter or commercial fer-
tilizer under no-till and conventional tillage; stratification 
occurred regardless of P source under no-till.

Soil surface layers are the primary interaction zone 
between precipitation and soil (Sims et al., 2000); therefore, 
P that accumulates on the soil surface has generally been 
identified as the principal source of P in both surface runoff 
and leachate (McDowell and Sharpley, 2001; Kleinman et 
al., 2011). Several researchers have noted increased DRP in 
runoff from no-till soils when soil P concentrations reach 
levels that exceed crop needs (Davis et al., 2005; Vadas et 
al., 2005; Allen et al., 2006; Kleinman et al., 2009; Wang et 
al., 2010; Baker et al., 2017). Similarly, surface application of 
fertilizers and manure can increase P losses in runoff when 
rainfall events occur shortly after application (Sharpley and 
Moyer, 2000; Preedy et al., 2001; Kleinman and Sharpley, 
2002; Withers et al., 2003; Allen and Mallarino, 2008). Soil 
health practices are also expected to increase soil microbial 
biomass, corresponding to a larger pool of microbial biomass 
P in surface soils (Hallama et al., 2018). This active organic 
P pool is vulnerable to cell lysis under freeze-thaw or dry-
wet cycles that are common in many agricultural regions. 
As such, the accumulation of a large soil microbial biomass 
P pool could exacerbate P losses in runoff (Turner and 
Haygarth, 2001; Blackwell et al., 2010).

Phosphorus uptake by growing cover crops cannot miti-
gate all dissolved P losses that result from P enrichment at 
the soil surface. While P uptake by cover crops can reduce P 
concentration in the soil solution near root surfaces (Wang 
et al., 2004; Kovar and Claassen, 2009), the soil solution P is 
generally buffered by a large reservoir of P adsorbed on the 
solid soil particles. Therefore, even an actively growing cover 
crop cannot significantly lower solution P concentration. 
Reducing the leaching potential of dissolved P is only pos-
sible via long-term P removal with crop harvest (Schoumans 
et al., 2014), which often does not occur with cover crops, 
as residues are left on the soil surface following termination 
(e.g., winter kill, chemical, or mechanical).

Phosphorus accumulated by the cover crop can be subse-
quently released as the plant tissue decays, either into the soil 
to nourish the following crop or into runoff water (Elliott, 
2013;  K. Liu et al., 2014). The fate of this released P depends 
on the timing and mechanism of cover crop termination, as 
well as climatic conditions. The greatest P losses from cover 
crop biomass are likely to occur when an extended period of 
frozen soils after cover crop termination is followed by rapid 
snowmelt or heavy rainfall (Roberson et al., 2007; Liu et al., 
2013). Kovar et al. (2011) found that DRP concentrations 
and loads in runoff increased when rainfall occurred follow-
ing spring termination of cereal rye (Secale cereale L.)–oat 
(Avena sativa L.) cover crop. They noted that the terminated 
cover crops trapped less sediment and sediment-bound P in 
spring runoff compared with actively growing cover crops 
in the fall. In contrast, most of the P will return to the soil 
if conditions favor infiltration, as was the case with a cover 
crop trial in southern Ontario (Lozier et al., 2017).
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Finally, increasing aggregate stability can increase mac-
ropores, ultimately increasing preferential flow pathways 
that bypass adsorption sites (J. Liu et al., 2014) in the soil 
matrix that would otherwise reduce DRP concentration. As a 
result, there may be more DRP than particulate P in shallow 
groundwater (Shipitalo et al., 2000; Shigaki and Sharpley, 
2011) that can be transported to surface waters via tile drains 
and surface ditches (Sims et al., 1998; Kleinman et al., 2015; 
King et al., 2017).

Mitigating the Phosphorus Loss 
Trade-offs Associated with Soil 
Health Practices

Widespread adoption of conservation tillage and cover 
crops with the intent of improving soil health can increase 
P loading to sensitive water bodies in the absence of addi-
tional P management. A primary example of this is the 
Lake Erie basin, where cover crops and conservation till-
age could be contributing to an increase in soluble P losses. 
Researchers speculated that widespread implementation of 
conservation tillage across the Lake Erie basin in the 1980s 
and 1990s led to improved water quality due to reduced 
sediment bound P losses (Boesch et al., 2001; Sharpley et 
al., 2015; Daryanto et al., 2017; Leinweber et al., 2018). 
Improvements in water quality that were driven by reduced 
sediment load were the basis for the Ohio Lake Erie P Task 
Force to specifically identify soil health practices as an 
approach to decrease P reaching the lake from agricultural 
fields (Ohio Phosphorus Task Force, 2013). Yet the Lake 
Erie basin has recently entered a period of re-eutrophica-
tion (Dodd and Sharpley, 2016), resulting in the return of 
persistent harmful nuisance algal blooms that have long 
plagued the watershed. Some researchers have linked this 
water quality reversal to increased DRP losses due, in part, 
to the wide adoption of conservation tillage; increases in 
tile drainage; and changes in the amount, placement, and 
timing of P fertilizers (Meals et al., 2012; Jarvie et al., 2017). 
Patterns of increased DRP loads are consistent across the 
watershed, despite localized variations in important deter-
minants like site hydrology, transport pathway, rainfall, and 
crop species (Baker et al., 2014; King et al., 2017; Pease et 
al., 2018).

As such, we argue that the core soil health practices of 
conservation tillage and cover crops must be combined with 
field-level P (nutrient) management practices such as inject-
ing or banding of fertilizers and manures under no-till. Smith 
et al. (2017) found that knifing in liquid polyphosphate fer-
tilizer at planting resulted in lower runoff DRP and total P 
losses when compared to surface applications of granular 
P fertilizers (i.e., monoammonium phosphate and diam-
monium phosphate) to no-till fields. Similarly, Johnson et 
al. (2011) reported decreased runoff DRP losses when dairy 
slurry was injected into pastures compared with surface 
application. Kovar et al. (2011) found that low disturbance 
injection of swine manure into a standing cover crop mini-
mized disturbance, increased P uptake by the cover crop, and 
reduced P losses.

Cade-Menun et al. (2015) suggested subsurface placement 
of fertilizers in no-till systems could prevent soil P stratifica-
tion; however, dealing with existing soil P stratification is a 
more difficult issue. Some researchers suggest periodic till-
age to reduce soil P stratification, but scientific evidence is 
conflicting on the efficacy of periodic tillage to remediate 
stratification and reduce P loss. While Sharpley (2003) found 
that tilling manured soils can reduce P stratification, Smith 
et al. (2017) demonstrated that disking following the appli-
cation of diammonium phosphate had the opposite effect, 
increasing the amount of P stratification. Long-term benefits 
of periodic tillage are also questionable. Dodd et al. (2014) 
documented a short-term reduction in subsurface DRP loss 
of 30 to 70% after tilling a pasture, but no difference in sub-
surface DRP loads could be detected beyond the first month. 
The authors hypothesized that preferential pathways reestab-
lished as pasture grasses developed. As such, implementing 
periodic tillage to reduce stratification would require careful 
consideration to determine if the benefits outweigh negating 
the soil health effects of conservation tillage.

Finally, drainage water management may reduce P leach-
ing losses associated with soil health practices in fields 
with tile or ditch drainage. Zhang et al. (2017) reported 
that implementing controlled drainage with subirrigation 
reduced DRP losses in tile flow compared with uncontrolled 
tile drainage. When controlled drainage was combined with 
a rye cover crop, total P losses from the field were further 
reduced. However, the authors noted the importance of mon-
itoring both surface runoff and tile drainage P loss pathways 
to determine the overall effectiveness of management prac-
tices on P losses; in their case, changing practices shifted the 
balance between surface and subsurface losses and between 
particulate and DRP losses, but not total P losses. As such, 
the decision to adopt soil health practices must include an 
analysis of the whole farm management system to determine 
the potential for P loss trade-offs.

Recognizing the Limitations of 
Soil Health Practices to Control 
Phosphorus Losses

The agroecological benefits of soil health practices such as 
conservation tillage and cover crops are demonstrable; how-
ever, implementation of these soil health practices will not 
always reduce P loss from agricultural landscapes. Reducing 
soil disturbance and increasing ground cover decrease sedi-
ment leaving the field, but reduced sediment losses do not 
always translate to meaningful decreases in total P leaving 
the field (Bullerjahn et al., 2016). While there are positive 
trade-offs associated with soil health practices relative to N 
(e.g., cover crops mitigate N leaching), the effects on P losses 
are more nuanced (Aronsson et al., 2016; Bullerjahn et al., 
2016; Jarvie et al., 2017).

To date, claims that soil health practices alone can signifi-
cantly reduce P losses are not substantiated by peer-reviewed 
literature; nevertheless, this does not mean that we should 
stop promoting soil health practices. Both the positive and 
the negative effects of implementing soil health practices, 
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including nutrient trade-offs, should be discussed with 
agricultural clientele. If the core principles of soil health do 
not reduce P losses, are they in fact “soil health” practices? 
While there is a need for additional meta-analyses to quan-
tify trade-offs associated with the adoption of soil health 
practices, discussion of these trade-offs and guidance in 
adjusting existing practices should be available via all edu-
cational outlets for soil health information. Ultimately, soil 
health information presented to agricultural clientele should 
be science-based and include a consistent message, regard-
less of who delivers the information. The desire to improve 
soil health in areas at high risk for P loss must be evaluated 
holistically, as adjusting other management practices (e.g., 
nutrient placement, drainage management) may be neces-
sary to achieve soil health objectives without further water 
quality degradation. Finally, to address water quality goals, 
there is a need to support development of innovative BMPs 
that provide multiple ecosystem and environmental ben-
efits, while addressing both particulate and soluble nutrient 
losses.
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